Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 10 |
Descriptor
Bayesian Statistics | 10 |
Prediction | 10 |
Models | 6 |
Cognitive Psychology | 3 |
Comparative Analysis | 3 |
Decision Making | 3 |
Generalization | 3 |
Probability | 3 |
Computation | 2 |
Evidence | 2 |
Experiments | 2 |
More ▼ |
Source
Cognitive Science | 10 |
Author
Griffiths, Thomas L. | 4 |
Alishahi, Afra | 1 |
Austerweil, Joseph L. | 1 |
Chater, Nick | 1 |
Feldman, Jacob | 1 |
Goodman, Noah D. | 1 |
Hayes, Brett | 1 |
Homaei, Hadjar | 1 |
Horng, Andy | 1 |
Hsu, Anne S. | 1 |
Jenkins, Gavin W. | 1 |
More ▼ |
Publication Type
Journal Articles | 10 |
Reports - Research | 6 |
Reports - Evaluative | 3 |
Reports - Descriptive | 1 |
Education Level
Early Childhood Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Xie, Belinda; Hayes, Brett – Cognitive Science, 2022
According to Bayesian models of judgment, testimony from independent informants has more evidential value than dependent testimony. Three experiments investigated learners' sensitivity to this distinction. Each experiment used a social version of the balls-and-urns task, in which participants judged which of two urns was the most likely source of…
Descriptors: Evidence, Decision Making, Task Analysis, Beliefs
Austerweil, Joseph L.; Sanborn, Sophia; Griffiths, Thomas L. – Cognitive Science, 2019
Generalization is a fundamental problem solved by every cognitive system in essentially every domain. Although it is known that how people generalize varies in complex ways depending on the context or domain, it is an open question how people "learn" the appropriate way to generalize for a new context. To understand this capability, we…
Descriptors: Generalization, Logical Thinking, Inferences, Bayesian Statistics
Hsu, Anne S.; Horng, Andy; Griffiths, Thomas L.; Chater, Nick – Cognitive Science, 2017
Identifying patterns in the world requires noticing not only unusual occurrences, but also unusual absences. We examined how people learn from absences, manipulating the extent to which an absence is expected. People can make two types of inferences from the absence of an event: either the event is possible but has not yet occurred, or the event…
Descriptors: Statistical Inference, Bayesian Statistics, Evidence, Prediction
Jenkins, Gavin W.; Samuelson, Larissa K.; Smith, Jodi R.; Spencer, John P. – Cognitive Science, 2015
It is unclear how children learn labels for multiple overlapping categories such as "Labrador," "dog," and "animal." Xu and Tenenbaum (2007a) suggested that learners infer correct meanings with the help of Bayesian inference. They instantiated these claims in a Bayesian model, which they tested with preschoolers and…
Descriptors: Generalization, Young Children, Inferences, Models
Griffiths, Thomas L.; Lewandowsky, Stephan; Kalish, Michael L. – Cognitive Science, 2013
Information changes as it is passed from person to person, with this process of cultural transmission allowing the minds of individuals to shape the information that they transmit. We present mathematical models of cultural transmission which predict that the amount of information passed from person to person should affect the rate at which that…
Descriptors: Culture, Information Dissemination, Mathematical Models, Prediction
Weaver, Rhiannon – Cognitive Science, 2008
Model validation in computational cognitive psychology often relies on methods drawn from the testing of theories in experimental physics. However, applications of these methods to computational models in typical cognitive experiments can hide multiple, plausible sources of variation arising from human participants and from stochastic cognitive…
Descriptors: Models, Prediction, Cognitive Psychology, Computation
Mozer, Michael C.; Pashler, Harold; Homaei, Hadjar – Cognitive Science, 2008
Griffiths and Tenenbaum (2006) asked individuals to make predictions about the duration or extent of everyday events (e.g., cake baking times), and reported that predictions were optimal, employing Bayesian inference based on veridical prior distributions. Although the predictions conformed strikingly to statistics of the world, they reflect…
Descriptors: Models, Individual Activities, Group Activities, Prediction
Alishahi, Afra; Stevenson, Suzanne – Cognitive Science, 2008
How children go about learning the general regularities that govern language, as well as keeping track of the exceptions to them, remains one of the challenging open questions in the cognitive science of language. Computational modeling is an important methodology in research aimed at addressing this issue. We must determine appropriate learning…
Descriptors: Semantics, Verbs, Linguistics, Cognitive Psychology
Goodman, Noah D.; Tenenbaum, Joshua B.; Feldman, Jacob; Griffiths, Thomas L. – Cognitive Science, 2008
This article proposes a new model of human concept learning that provides a rational analysis of learning feature-based concepts. This model is built upon Bayesian inference for a grammatically structured hypothesis space--a concept language of logical rules. This article compares the model predictions to human generalization judgments in several…
Descriptors: Mathematics Education, Concept Formation, Models, Prediction
Shiffrin, Richard M.; Lee, Michael D.; Kim, Woojae; Wagenmakers, Eric-Jan – Cognitive Science, 2008
This article reviews current methods for evaluating models in the cognitive sciences, including theoretically based approaches, such as Bayes factors and minimum description length measures; simulation approaches, including model mimicry evaluations; and practical approaches, such as validation and generalization measures. This article argues…
Descriptors: Bayesian Statistics, Generalization, Sciences, Models