Publication Date
In 2025 | 0 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 12 |
Since 2016 (last 10 years) | 17 |
Since 2006 (last 20 years) | 18 |
Descriptor
Accuracy | 18 |
Prediction | 18 |
Models | 8 |
Artificial Intelligence | 5 |
At Risk Students | 5 |
College Students | 5 |
Foreign Countries | 5 |
Identification | 5 |
Electronic Learning | 4 |
Intelligent Tutoring Systems | 4 |
Learning Analytics | 4 |
More ▼ |
Source
IEEE Transactions on Learning… | 18 |
Author
Baneres, David | 2 |
Rodriguez-Gonzalez, M. Elena | 2 |
Yang, Juan | 2 |
Andrea Zanellati | 1 |
Bergamin, Per | 1 |
Bitter-Rijpkema, Marlies | 1 |
Bo Zhang | 1 |
Brouns, Francis | 1 |
Brouns, Wim van der Vegt | 1 |
Chen, Enhong | 1 |
Chen, Guanliang | 1 |
More ▼ |
Publication Type
Journal Articles | 18 |
Reports - Research | 15 |
Reports - Descriptive | 2 |
Reports - Evaluative | 1 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 10 |
Postsecondary Education | 9 |
Elementary Education | 1 |
Secondary Education | 1 |
Audience
Location
China | 2 |
Bulgaria | 1 |
China (Shanghai) | 1 |
Croatia | 1 |
Cyprus | 1 |
Estonia | 1 |
Germany | 1 |
Greece | 1 |
Ireland | 1 |
Lithuania | 1 |
Minnesota | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Zhenchang Xia; Nan Dong; Jia Wu; Chuanguo Ma – IEEE Transactions on Learning Technologies, 2024
As an excellent means of improving students' effective learning, knowledge tracking can assess the level of knowledge mastery and discover latent learning patterns based on students' historical learning evaluation of related questions. The advantage of knowledge tracking is that it can better organize and adjust students' learning plans, provide…
Descriptors: Graphs, Artificial Intelligence, Multivariate Analysis, Prediction
Sha, Lele; Rakovic, Mladen; Das, Angel; Gasevic, Dragan; Chen, Guanliang – IEEE Transactions on Learning Technologies, 2022
Predictive modeling is a core technique used in tackling various tasks in learning analytics research, e.g., classifying educational forum posts, predicting learning performance, and identifying at-risk students. When applying a predictive model, it is often treated as the first priority to improve its prediction accuracy as much as possible.…
Descriptors: Prediction, Models, Accuracy, Mathematics
Qin Ni; Yifei Mi; Yonghe Wu; Liang He; Yuhui Xu; Bo Zhang – IEEE Transactions on Learning Technologies, 2024
Learning style recognition is an indispensable part of achieving personalized learning in online learning systems. The traditional inventory method for learning style identification faces the limitations such as subject and static characteristics. Therefore, an automatic and reliable learning style recognition mechanism is designed in this…
Descriptors: Cognitive Style, Electronic Learning, Prediction, Identification
Imhof, Christof; Comsa, Ioan-Sorin; Hlosta, Martin; Parsaeifard, Behnam; Moser, Ivan; Bergamin, Per – IEEE Transactions on Learning Technologies, 2023
Procrastination, the irrational delay of tasks, is a common occurrence in online learning. Potential negative consequences include a higher risk of drop-outs, increased stress, and reduced mood. Due to the rise of learning management systems (LMS) and learning analytics (LA), indicators of such behavior can be detected, enabling predictions of…
Descriptors: Prediction, Time Management, Electronic Learning, Artificial Intelligence
Andrea Zanellati; Stefano Pio Zingaro; Maurizio Gabbrielli – IEEE Transactions on Learning Technologies, 2024
Academic dropout remains a significant challenge for education systems, necessitating rigorous analysis and targeted interventions. This study employs machine learning techniques, specifically random forest (RF) and feature tokenizer transformer (FTT), to predict academic attrition. Utilizing a comprehensive dataset of over 40 000 students from an…
Descriptors: Dropouts, Dropout Characteristics, Potential Dropouts, Artificial Intelligence
Baneres, David; Rodriguez-Gonzalez, M. Elena; Guerrero-Roldan, Ana Elena – IEEE Transactions on Learning Technologies, 2023
Course dropout is a concern in online higher education, mainly in first-year courses when different factors negatively influence the learners' engagement leading to an unsuccessful outcome or even dropping out from the university. The early identification of such potential at-risk learners is the key to intervening and trying to help them before…
Descriptors: Prediction, Models, Identification, Potential Dropouts
Hua Ma; Wen Zhao; Yuqi Tang; Peiji Huang; Haibin Zhu; Wensheng Tang; Keqin Li – IEEE Transactions on Learning Technologies, 2024
To prevent students from learning risks and improve teachers' teaching quality, it is of great significance to provide accurate early warning of learning performance to students by analyzing their interactions through an e-learning system. In existing research, the correlations between learning risks and students' changing cognitive abilities or…
Descriptors: College Students, Learning Analytics, Learning Management Systems, Academic Achievement
Hsu, Hao-Hsuan; Huang, Nen-Fu – IEEE Transactions on Learning Technologies, 2022
This article introduces Xiao-Shih, the first intelligent question answering bot on Chinese-based massive open online courses (MOOCs). Question answering is critical for solving individual problems. However, instructors on MOOCs must respond to many questions, and learners must wait a long time for answers. To address this issue, Xiao-Shih…
Descriptors: Foreign Countries, Artificial Intelligence, Online Courses, Natural Language Processing
Mandal, Sourav; Naskar, Sudip Kumar – IEEE Transactions on Learning Technologies, 2021
Solving mathematical (math) word problems (MWP) automatically is a challenging research problem in natural language processing, machine learning, and education (learning) technology domains, which has gained momentum in the recent years. Applications of solving varieties of MWPs can increase the efficacy of teaching-learning systems, such as…
Descriptors: Classification, Word Problems (Mathematics), Problem Solving, Arithmetic
Wang, Fei; Huang, Zhenya; Liu, Qi; Chen, Enhong; Yin, Yu; Ma, Jianhui; Wang, Shijin – IEEE Transactions on Learning Technologies, 2023
To provide personalized support on educational platforms, it is crucial to model the evolution of students' knowledge states. Knowledge tracing is one of the most popular technologies for this purpose, and deep learning-based methods have achieved state-of-the-art performance. Compared to classical models, such as Bayesian knowledge tracing, which…
Descriptors: Cognitive Measurement, Diagnostic Tests, Models, Prediction
Nabizadeh, Amir Hossein; Goncalves, Daniel; Gama, Sandra; Jorge, Joaquim – IEEE Transactions on Learning Technologies, 2022
The main challenge in higher education is student retention. While many methods have been proposed to overcome this challenge, early and continuous feedback can be very effective. In this article, we propose a method for predicting student final grades in a course using only their performance data in the current semester. It assists students in…
Descriptors: College Students, Prediction, Grades (Scholastic), Game Based Learning
Polyzou, Agoritsa; Karypis, George – IEEE Transactions on Learning Technologies, 2019
Developing tools to support students and learning in a traditional or online setting is a significant task in today's educational environment. The initial steps toward enabling such technologies using machine learning techniques focused on predicting the student's performance in terms of the achieved grades. However, these approaches do not…
Descriptors: Prediction, Academic Achievement, Low Achievement, Classification
Gupta, Anika; Garg, Deepak; Kumar, Parteek – IEEE Transactions on Learning Technologies, 2022
With the onset of online education via technology-enhanced learning platforms, large amount of educational data is being generated in the form of logs, clickstreams, performance, etc. These Virtual Learning Environments provide an opportunity to the researchers for the application of educational data mining and learning analytics, for mining the…
Descriptors: Markov Processes, Online Courses, Learning Management Systems, Learning Analytics
Fazeli, Soude; Drachsler, Hendrik; Bitter-Rijpkema, Marlies; Brouns, Francis; Brouns, Wim van der Vegt; Sloep, Peter B. – IEEE Transactions on Learning Technologies, 2018
Recommender systems provide users with content they might be interested in. Conventionally, recommender systems are evaluated mostly by using prediction accuracy metrics only. But, the ultimate goal of a recommender system is to increase user satisfaction. Therefore, evaluations that measure user satisfaction should also be performed before…
Descriptors: Evaluation, Socialization, Accuracy, Prediction
Kaser, Tanja; Klingler, Severin; Schwing, Alexander G.; Gross, Markus – IEEE Transactions on Learning Technologies, 2017
Intelligent tutoring systems adapt the curriculum to the needs of the individual student. Therefore, an accurate representation and prediction of student knowledge is essential. Bayesian Knowledge Tracing (BKT) is a popular approach for student modeling. The structure of BKT models, however, makes it impossible to represent the hierarchy and…
Descriptors: Bayesian Statistics, Models, Intelligent Tutoring Systems, Networks
Previous Page | Next Page ยป
Pages: 1 | 2