Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 7 |
| Since 2017 (last 10 years) | 9 |
| Since 2007 (last 20 years) | 9 |
Descriptor
| Accuracy | 9 |
| Prediction | 9 |
| Artificial Intelligence | 5 |
| Algorithms | 4 |
| MOOCs | 3 |
| Models | 3 |
| Academic Achievement | 2 |
| Bayesian Statistics | 2 |
| Data Analysis | 2 |
| Electronic Learning | 2 |
| Evaluation Methods | 2 |
| More ▼ | |
Source
| Interactive Learning… | 9 |
Author
| Aammou, Souhaib | 1 |
| Asselman, Amal | 1 |
| Bei Fang | 1 |
| Bing, Eric | 1 |
| Chenglu Li | 1 |
| Chu, Yu | 1 |
| Ding, Xinyi | 1 |
| Donahoo, Kevin | 1 |
| Doyle, Amanda | 1 |
| Hao Zhang | 1 |
| Jia Hao | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 9 |
| Reports - Research | 9 |
Education Level
| High Schools | 2 |
| Secondary Education | 2 |
| Adult Education | 1 |
| Elementary Education | 1 |
| Higher Education | 1 |
| Junior High Schools | 1 |
| Middle Schools | 1 |
| Postsecondary Education | 1 |
Audience
Location
| China | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Xiang Feng; Keyi Yuan; Xiu Guan; Longhui Qiu – Interactive Learning Environments, 2024
Datasets are critical for emotion analysis in the machine learning field. This study aims to explore emotion analysis datasets and related benchmarks in online learning, since, currently, there are very few studies that explore the same. We have scientifically labeled the topic and nine-category emotion of 4715 comment texts in online learning…
Descriptors: MOOCs, Psychological Patterns, Artificial Intelligence, Prediction
Senthil Kumaran, V.; Malar, B. – Interactive Learning Environments, 2023
Churn in e-learning refers to learners who gradually perform less and become lethargic and may potentially drop out from the course. Churn prediction is a highly sensitive and critical task in an e-learning system because inaccurate predictions might cause undesired consequences. A lot of approaches proposed in the literature analyzed and modeled…
Descriptors: Electronic Learning, Dropouts, Accuracy, Classification
Chenglu Li; Wanli Xing; Walter Leite – Interactive Learning Environments, 2024
As instruction shifts away from traditional approaches, online learning has grown in popularity in K-12 and higher education. Artificial intelligence (AI) and learning analytics methods such as machine learning have been used by educational scholars to support online learners on a large scale. However, the fairness of AI prediction in educational…
Descriptors: Artificial Intelligence, Prediction, Mathematics Achievement, Algorithms
Jing Chen; Bei Fang; Hao Zhang; Xia Xue – Interactive Learning Environments, 2024
High dropout rate exists universally in massive open online courses (MOOCs) due to the separation of teachers and learners in space and time. Dropout prediction using the machine learning method is an extremely important prerequisite to identify potential at-risk learners to improve learning. It has attracted much attention and there have emerged…
Descriptors: MOOCs, Potential Dropouts, Prediction, Artificial Intelligence
MOOC Performance Prediction and Analysis via Bayesian Network and Maslow's Hierarchical Needs Theory
Luyu Zhu; Jia Hao; Jianhou Gan – Interactive Learning Environments, 2024
Nowadays, Massive Open Online Courses (MOOC) has been gradually accepted by the public as a new type of education and teaching method. However, due to the lack of timely intervention and guidance from educators, learners' performance is not as effective as it could be. To address this problem, predicting MOOC learners' performance and providing…
Descriptors: MOOCs, Academic Achievement, Prediction, Bayesian Statistics
Asselman, Amal; Khaldi, Mohamed; Aammou, Souhaib – Interactive Learning Environments, 2023
Performance Factors Analysis (PFA) is considered one of the most important Knowledge Tracing (KT) approaches used for constructing adaptive educational hypermedia systems. It has shown a high prediction accuracy against many other KT approaches. While, the desire to estimate more accurately the student level leads researchers to enhance PFA by…
Descriptors: Algorithms, Artificial Intelligence, Factor Analysis, Student Behavior
Siu-Cheung Kong; Wei Shen – Interactive Learning Environments, 2024
Logistic regression models have traditionally been used to identify the factors contributing to students' conceptual understanding. With the advancement of the machine learning-based research approach, there are reports that some machine learning algorithms outperform logistic regression models in terms of prediction. In this study, we collected…
Descriptors: Student Characteristics, Predictor Variables, Comprehension, Computation
Meng, Lingling; Zhang, Mingxin; Zhang, Wanxue; Chu, Yu – Interactive Learning Environments, 2021
Bayesian knowledge tracing model (BKT) is a typical student knowledge assessment method. It is widely used in intelligent tutoring systems. In the standard BKT model, all knowledge and skills are independent of each other. However, in the process of student learning, they have a very close relation. A student may understand knowledge B better when…
Descriptors: Bayesian Statistics, Intelligent Tutoring Systems, Student Evaluation, Knowledge Level
Ding, Xinyi; Larson, Eric C.; Doyle, Amanda; Donahoo, Kevin; Rajgopal, Radhika; Bing, Eric – Interactive Learning Environments, 2021
In this paper, we develop a context-aware, tablet-based learning module for adult education. Specifically, we focus on adult education in healthcare-teaching learners to perform a medical screening procedure. Based upon how learners navigate through the learning module (e.g. swipe-speed and click duration, among others), we use machine learning to…
Descriptors: Handheld Devices, Educational Technology, Navigation (Information Systems), Learning Modules

Peer reviewed
Direct link
