NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Mahmoud Abdasalam; Ahmad Alzubi; Kolawole Iyiola – Education and Information Technologies, 2025
This study introduces an optimized ensemble deep neural network (Optimized Ensemble Deep-NN) to enhance the accuracy of predicting student grades. This model solves the problem of different and complicated student performance data by using deep neural networks, ensemble learning, and a number of optimization algorithms, such as Adam, SGD, and RMS…
Descriptors: Grades (Scholastic), Prediction, Accuracy, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Venera Nakhipova; Yerzhan Kerimbekov; Zhanat Umarova; Halil ibrahim Bulbul; Laura Suleimenova; Elvira Adylbekova – International Journal of Information and Communication Technology Education, 2024
This article introduces a novel method that integrates collaborative filtering into the naive Bayes model to enhance predicting student academic performance. The combined approach leverages collaborative user behavior analysis and probabilistic modeling, showing promising results in improved prediction precision. Collaborative Filtering explores…
Descriptors: Academic Achievement, Prediction, Cooperation, Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Tenzin Doleck; Pedram Agand; Dylan Pirrotta – Education and Information Technologies, 2025
As is rapidly becoming clear, data science increasingly permeates many aspects of life. Educational research recognizes the importance and complexity of learning data science. In line with this imperative, there is a growing need to investigate the factors that influence student performance in data science tasks. In this paper, we aimed to apply…
Descriptors: Prediction, Data Science, Performance, Data Analysis
He, Dan – ProQuest LLC, 2023
This dissertation examines the effectiveness of machine learning algorithms and feature engineering techniques for analyzing process data and predicting test performance. The study compares three classification approaches and identifies item-specific process features that are highly predictive of student performance. The findings suggest that…
Descriptors: Artificial Intelligence, Data Analysis, Algorithms, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaona Xia; Tianjiao Wang – Asia-Pacific Education Researcher, 2024
The artificial intelligence methods might be applied to see through the education problems, and make effective prediction and decision. The transformation from data to decision are inseparable from the learning analytics. In order to solve the dynamic multi-objective decision problems, a decision learning algorithm is designed to analyze the…
Descriptors: Learning, Behavior, Achievement, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
XinXiu Yang – International Journal of Information and Communication Technology Education, 2024
The objective of this work is to predict the employment rate of students based on the information in the SSM (student status management) in colleges and universities. Firstly, the relevant content of SSM is introduced. Secondly, the BP (Back Propagation) neural network, the LM (Levenberg Marquardt) algorithm, and the BR (Bayesian Regularization)…
Descriptors: Prediction, Employment Patterns, College Students, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Mohamed Zine; Fouzi Harrou; Mohammed Terbeche; Ying Sun – Education and Information Technologies, 2025
E-learning readiness (ELR) is critical for implementing digital education strategies, particularly in developing countries where online learning faces unique challenges. This study aims to provide a concise and actionable framework for assessing and predicting ELR in Algerian universities by combining the ADKAR model with advanced machine learning…
Descriptors: Electronic Learning, Learning Readiness, Artificial Intelligence, Organizational Change
Peer reviewed Peer reviewed
Direct linkDirect link
Khor, Ean Teng – International Journal of Information and Learning Technology, 2022
Purpose: The purpose of the study is to build predictive models for early detection of low-performing students and examine the factors that influence massive open online courses students' performance. Design/methodology/approach: For the first step, the author performed exploratory data analysis to analyze the dataset. The process was then…
Descriptors: Prediction, Low Achievement, Algorithms, Artificial Intelligence
Keeanna Jessica Marie Warren – ProQuest LLC, 2022
Teacher turnover continues to be a significant problem in the United States. Teacher turnover is expensive because it costs money to continue recruiting, hiring, and training new teachers to replace those leaving (Carver-Thomas & Darling-Hammond, 2017). Most important though, teacher turnover hurts student achievement and success (Sorensen…
Descriptors: Data Analysis, Prediction, Teacher Persistence, Faculty Mobility
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Selma Tosun; Dilara Bakan Kalaycioglu – Journal of Educational Technology and Online Learning, 2024
Predicting and improving the academic achievement of university students is a multifactorial problem. Considering the low success rates and high dropout rates, particularly in open education programs characterized by mass enrollment, academic success is an important research area with its causes and consequences. This study aimed to solve a…
Descriptors: Academic Achievement, Open Education, Distance Education, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Yaw Marfo Missah; Fuseini Inusah; Ussiph Najim; Frimpong Twum – SAGE Open, 2023
The major challenge of most basic schools is inadequate educational resources despite a conscious effort to constantly provide. This is a result of inaccurate data management leading to inappropriate predictions for effective planning. The actual efficiency of a system is determined by its ability to predict real-life data with speed and accuracy.…
Descriptors: Mathematical Models, Information Management, Educational Resources, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Asselman, Amal; Khaldi, Mohamed; Aammou, Souhaib – Interactive Learning Environments, 2023
Performance Factors Analysis (PFA) is considered one of the most important Knowledge Tracing (KT) approaches used for constructing adaptive educational hypermedia systems. It has shown a high prediction accuracy against many other KT approaches. While, the desire to estimate more accurately the student level leads researchers to enhance PFA by…
Descriptors: Algorithms, Artificial Intelligence, Factor Analysis, Student Behavior
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xu, Tonghui – Journal of Educators Online, 2023
The early detection of students' academic performance or final grades helps instructors prepare their online courses. In the Open University Learning Analytics Dataset, I found many online students clicked the course materials before the first day of class. This study aims to investigate how data mining models can use this student interaction data…
Descriptors: College Students, Online Courses, Academic Achievement, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Parhizkar, Amirmohammad; Tejeddin, Golnaz; Khatibi, Toktam – Education and Information Technologies, 2023
Increasing productivity in educational systems is of great importance. Researchers are keen to predict the academic performance of students; this is done to enhance the overall productivity of educational system by effectively identifying students whose performance is below average. This universal concern has been combined with data science…
Descriptors: Algorithms, Grade Point Average, Interdisciplinary Approach, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Feng, Mingyu, Ed.; Käser, Tanja, Ed.; Talukdar, Partha, Ed. – International Educational Data Mining Society, 2023
The Indian Institute of Science is proud to host the fully in-person sixteenth iteration of the International Conference on Educational Data Mining (EDM) during July 11-14, 2023. EDM is the annual flagship conference of the International Educational Data Mining Society. The theme of this year's conference is "Educational data mining for…
Descriptors: Information Retrieval, Data Analysis, Computer Assisted Testing, Cheating
Previous Page | Next Page »
Pages: 1  |  2