Publication Date
In 2025 | 0 |
Since 2024 | 6 |
Since 2021 (last 5 years) | 10 |
Since 2016 (last 10 years) | 10 |
Since 2006 (last 20 years) | 10 |
Descriptor
Algorithms | 10 |
Identification | 10 |
Prediction | 10 |
At Risk Students | 9 |
Accuracy | 7 |
Artificial Intelligence | 7 |
Learning Analytics | 4 |
Classification | 3 |
Intervention | 3 |
Models | 3 |
Academic Achievement | 2 |
More ▼ |
Source
Education and Information… | 3 |
Education Economics | 1 |
Interactive Learning… | 1 |
International Journal of… | 1 |
Journal of Educational… | 1 |
Journal of Educational… | 1 |
Physical Review Physics… | 1 |
Society for Research on… | 1 |
Author
Abdelhadi Raihani | 1 |
Ben Soussia, Amal | 1 |
Bouchaib Cherradi | 1 |
Boyer, Anne | 1 |
Chen, Guanhua | 1 |
Christina Weiland | 1 |
Cornelisz, Ilja | 1 |
Dawyndt, Peter | 1 |
De Wever, Bram | 1 |
Deconinck, Louise | 1 |
Dhoedt, Bart | 1 |
More ▼ |
Publication Type
Journal Articles | 9 |
Reports - Research | 8 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 3 |
Postsecondary Education | 3 |
Early Childhood Education | 1 |
Elementary Education | 1 |
Elementary Secondary Education | 1 |
Grade 3 | 1 |
Primary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Houssam El Aouifi; Mohamed El Hajji; Youssef Es-Saady – Education and Information Technologies, 2024
Dropout refers to the phenomenon of students leaving school before completing their degree or program of study. Dropout is a major concern for educational institutions, as it affects not only the students themselves but also the institutions' reputation and funding. Dropout can occur for a variety of reasons, including academic, financial,…
Descriptors: At Risk Students, Potential Dropouts, Identification, Influences
Selma Tosun; Dilara Bakan Kalaycioglu – Journal of Educational Technology and Online Learning, 2024
Predicting and improving the academic achievement of university students is a multifactorial problem. Considering the low success rates and high dropout rates, particularly in open education programs characterized by mass enrollment, academic success is an important research area with its causes and consequences. This study aimed to solve a…
Descriptors: Academic Achievement, Open Education, Distance Education, Foreign Countries
Eegdeman, Irene; Cornelisz, Ilja; Meeter, Martijn; van Klaveren, Chris – Education Economics, 2023
Inefficient targeting of students at risk of dropping out might explain why dropout-reducing efforts often have no or mixed effects. In this study, we present a new method which uses a series of machine learning algorithms to efficiently identify students at risk and makes the sensitivity/precision trade-off inherent in targeting students for…
Descriptors: Foreign Countries, Vocational Schools, Dropout Characteristics, Dropout Prevention
Mohammed Jebbari; Bouchaib Cherradi; Soufiane Hamida; Abdelhadi Raihani – Education and Information Technologies, 2024
With the advancements in technology and the growing demand for online education, Virtual Learning Environments (VLEs) have experienced rapid development in recent years. This demand was especially evident during the COVID-19 pandemic. The incorporation of new technologies in VLEs provides new opportunities to better understand the behaviors of…
Descriptors: MOOCs, Algorithms, Computer Simulation, COVID-19
Ben Soussia, Amal; Labba, Chahrazed; Roussanaly, Azim; Boyer, Anne – International Journal of Information and Learning Technology, 2022
Purpose: The goal is to assess performance prediction systems (PPS) that are used to assist at-risk learners. Design/methodology/approach: The authors propose time-dependent metrics including earliness and stability. The authors investigate the relationships between the various temporal metrics and the precision metrics in order to identify the…
Descriptors: Performance, Prediction, Student Evaluation, At Risk Students
Van Petegem, Charlotte; Deconinck, Louise; Mourisse, Dieter; Maertens, Rien; Strijbol, Niko; Dhoedt, Bart; De Wever, Bram; Dawyndt, Peter; Mesuere, Bart – Journal of Educational Computing Research, 2023
We present a privacy-friendly early-detection framework to identify students at risk of failing in introductory programming courses at university. The framework was validated for two different courses with annual editions taken by higher education students (N = 2 080) and was found to be highly accurate and robust against variation in course…
Descriptors: Pass Fail Grading, At Risk Students, Introductory Courses, Programming
Saleem Malik; K. Jothimani – Education and Information Technologies, 2024
Monitoring students' academic progress is vital for ensuring timely completion of their studies and supporting at-risk students. Educational Data Mining (EDM) utilizes machine learning and feature selection to gain insights into student performance. However, many feature selection algorithms lack performance forecasting systems, limiting their…
Descriptors: Algorithms, Decision Making, At Risk Students, Learning Management Systems
John Pace; John Hansen; John Stewart – Physical Review Physics Education Research, 2024
Machine learning models were constructed to predict student performance in an introductory mechanics class at a large land-grant university in the United States using data from 2061 students. Students were classified as either being at risk of failing the course (earning a D or F) or not at risk (earning an A, B, or C). The models focused on…
Descriptors: Artificial Intelligence, Identification, At Risk Students, Physics
Xing, Wanli; Pei, Bo; Li, Shan; Chen, Guanhua; Xie, Charles – Interactive Learning Environments, 2023
Engineering design plays an important role in education. However, due to its open nature and complexity, providing timely support to students has been challenging using the traditional assessment methods. This study takes an initial step to employ learning analytics to build performance prediction models to help struggling students. It allows…
Descriptors: Learning Analytics, Engineering Education, Prediction, Design
Tiffany Wu; Christina Weiland – Society for Research on Educational Effectiveness, 2024
Background/Context: Chronic absenteeism is a serious problem that has been linked to lower academic achievement, diminished socioemotional skills, and an increased likelihood of high school dropout (Allensworth et al., 2021; Gottfried, 2014). As a result, many schools have begun to embrace early warning systems (EWS) as a tool to identify and flag…
Descriptors: Attendance, Early Childhood Education, Intervention, Artificial Intelligence