NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of…1
What Works Clearinghouse Rating
Showing 1 to 15 of 20 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jing Chen; Bei Fang; Hao Zhang; Xia Xue – Interactive Learning Environments, 2024
High dropout rate exists universally in massive open online courses (MOOCs) due to the separation of teachers and learners in space and time. Dropout prediction using the machine learning method is an extremely important prerequisite to identify potential at-risk learners to improve learning. It has attracted much attention and there have emerged…
Descriptors: MOOCs, Potential Dropouts, Prediction, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lee, Morgan P.; Croteau, Ethan; Gurung, Ashish; Botelho, Anthony F.; Heffernan, Neil T. – International Educational Data Mining Society, 2023
The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in mathematics, is a well-established and proven approach in learning analytics. In this work, we report on our analysis examining the generalizability of BKT models across academic years attributed to "detector rot." We compare the…
Descriptors: Bayesian Statistics, Models, Generalizability Theory, Longitudinal Studies
Peer reviewed Peer reviewed
PDF on ERIC Download full text
ALSaad, Fareedah; Reichel, Thomas; Zeng, Yuchen; Alawini, Abdussalam – International Educational Data Mining Society, 2021
With the emergence of MOOCs, it becomes crucial to automate the process of a course design to accommodate the diverse learning demands of students. Modeling the relationships among educational topics is a fundamental first step for automating curriculum planning and course design. In this paper, we introduce "Topic Transition Map" (TTM),…
Descriptors: Online Courses, Student Diversity, Student Needs, Course Content
Peer reviewed Peer reviewed
Direct linkDirect link
Meng, Lingling; Zhang, Mingxin; Zhang, Wanxue; Chu, Yu – Interactive Learning Environments, 2021
Bayesian knowledge tracing model (BKT) is a typical student knowledge assessment method. It is widely used in intelligent tutoring systems. In the standard BKT model, all knowledge and skills are independent of each other. However, in the process of student learning, they have a very close relation. A student may understand knowledge B better when…
Descriptors: Bayesian Statistics, Intelligent Tutoring Systems, Student Evaluation, Knowledge Level
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tran, Tuan M.; Hasegawa, Shinobu – International Association for Development of the Information Society, 2022
A learner model reflects learning patterns and characteristics of a learner. A learner model with learning history and its effectiveness plays a significant role in supporting a learner's understanding of their strengths and weaknesses of their way of learning in order to make proper adjustments for improvement. Nowadays, learners have been…
Descriptors: Markov Processes, Learning Processes, Models, Scores
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Patel, Nirmal; Sharma, Aditya; Shah, Tirth; Lomas, Derek – Journal of Educational Data Mining, 2021
Process Analysis is an emerging approach to discover meaningful knowledge from temporal educational data. The study presented in this paper shows how we used Process Analysis methods on the National Assessment of Educational Progress (NAEP) test data for modeling and predicting student test-taking behavior. Our process-oriented data exploration…
Descriptors: Learning Analytics, National Competency Tests, Evaluation Methods, Prediction
Bonifay, Wes; Depaoli, Sarah – Grantee Submission, 2021
Statistical analysis of categorical data often relies on multiway contingency tables; yet, as the number of categories and/or variables increases, the number of table cells with few (or zero) observations also increases. Unfortunately, sparse contingency tables invalidate the use of standard good-ness-of-fit statistics. Limited-information fit…
Descriptors: Bayesian Statistics, Models, Measurement Techniques, Item Response Theory
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Doroudi, Shayan; Brunskill, Emma – International Educational Data Mining Society, 2017
In this paper, we investigate two purported problems with Bayesian Knowledge Tracing (BKT), a popular statistical model of student learning: "identifiability" and "semantic model degeneracy." In 2007, Beck and Chang stated that BKT is susceptible to an "identifiability problem"--various models with different…
Descriptors: Bayesian Statistics, Research Problems, Models, Learning
Ryo Maie – ProQuest LLC, 2022
Skill acquisition theorists conceptualize second language (L2) learning as the acquisition of a set of perceptual, cognitive, and motor skills. The dominant view in skill acquisition theory is to regard L2 skill acquisition as a three-stage process "from initial representation of knowledge through initial changes in behavior to eventual…
Descriptors: Second Language Learning, Second Language Instruction, Linguistic Theory, Learning Processes
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Doroudi, Shayan; Brunskill, Emma – Grantee Submission, 2017
In this paper, we investigate two purported problems with Bayesian Knowledge Tracing (BKT), a popular statistical model of student learning: "identifiability" and "semantic model degeneracy." In 2007, Beck and Chang stated that BKT is susceptible to an "identifiability problem"--various models with different…
Descriptors: Bayesian Statistics, Research Problems, Statistical Analysis, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Halpern, David; Tubridy, Shannon; Wang, Hong Yu; Gasser, Camille; Popp, Pamela Osborn; Davachi, Lila; Gureckis, Todd M. – International Educational Data Mining Society, 2018
Knowledge tracing is a popular and successful approach to modeling student learning. In this paper we investigate whether the addition of neuroimaging observations to a knowledge tracing model enables accurate prediction of memory performance in held-out data. We propose a Hidden Markov Model of memory acquisition related to Bayesian Knowledge…
Descriptors: Learning Processes, Memory, Prediction, Second Language Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Kaser, Tanja; Klingler, Severin; Schwing, Alexander G.; Gross, Markus – IEEE Transactions on Learning Technologies, 2017
Intelligent tutoring systems adapt the curriculum to the needs of the individual student. Therefore, an accurate representation and prediction of student knowledge is essential. Bayesian Knowledge Tracing (BKT) is a popular approach for student modeling. The structure of BKT models, however, makes it impossible to represent the hierarchy and…
Descriptors: Bayesian Statistics, Models, Intelligent Tutoring Systems, Networks
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Shiyu; Zhang, Susu; Douglas, Jeff; Culpepper, Steven – Measurement: Interdisciplinary Research and Perspectives, 2018
Analyzing students' growth remains an important topic in educational research. Most recently, Diagnostic Classification Models (DCMs) have been used to track skill acquisition in a longitudinal fashion, with the purpose to provide an estimate of students' learning trajectories in terms of the change of fine-grained skills overtime. Response time…
Descriptors: Reaction Time, Markov Processes, Computer Assisted Instruction, Spatial Ability
Chen, Haoming – ProQuest LLC, 2016
Video compression and communication has been an important field over the past decades and critical for many applications, e.g., video on demand, video-conferencing, and remote education. In many applications, providing low-delay and error-resilient video transmission and increasing the coding efficiency are two major challenges. Low-delay and…
Descriptors: Video Technology, Telecommunications, Information Technology, Coding
Toure, Ibrahim – ProQuest LLC, 2017
Terrorism is a complex and evolving phenomenon. In the past few decades, we have witnessed an increase in the number of terrorist incidents in the world. The security and stability of many countries is threatened by terrorist groups. Perpetrators now use sophisticated weapons and the attacks are more and more lethal. Currently, terrorist incidents…
Descriptors: Data Analysis, Prediction, Terrorism, Risk
Previous Page | Next Page ยป
Pages: 1  |  2