Publication Date
In 2025 | 16 |
Since 2024 | 106 |
Since 2021 (last 5 years) | 421 |
Since 2016 (last 10 years) | 750 |
Since 2006 (last 20 years) | 1563 |
Descriptor
Models | 2066 |
Prediction | 2066 |
Foreign Countries | 326 |
Correlation | 257 |
Academic Achievement | 213 |
Comparative Analysis | 209 |
Statistical Analysis | 209 |
Higher Education | 201 |
College Students | 181 |
Data Analysis | 176 |
Decision Making | 165 |
More ▼ |
Source
Author
Publication Type
Education Level
Audience
Practitioners | 31 |
Researchers | 22 |
Administrators | 16 |
Policymakers | 12 |
Teachers | 9 |
Media Staff | 2 |
Parents | 1 |
Students | 1 |
Support Staff | 1 |
Location
Canada | 26 |
Germany | 26 |
Australia | 25 |
United States | 24 |
China | 22 |
United Kingdom | 20 |
Florida | 18 |
Texas | 16 |
Turkey | 16 |
California | 15 |
North Carolina | 15 |
More ▼ |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 2 |
Defunis v Odegaard | 1 |
Elementary and Secondary… | 1 |
Higher Education Act Title IV | 1 |
Individuals with Disabilities… | 1 |
Proposition 13 (California… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Yusuf Uzun; Mehmet Kayrici – Journal of Education in Science, Environment and Health, 2025
In this study, which focuses on selecting the material and predicting its mechanical behaviors in materials science, an Artificial Neural Network (ANN) was used to predict and simulate the low-speed impact effects of hybrid nano-doped aramid composites. There are not enough studies about open education practices in this field. Since error values…
Descriptors: Artificial Intelligence, Open Education, Energy, Models
Fabricio Trujillo; Marcelo Pozo; Gabriela Suntaxi – Journal of Technology and Science Education, 2025
This paper presents a systematic literature review of using Machine Learning (ML) techniques in higher education career recommendation. Despite the growing interest in leveraging Artificial Intelligence (AI) for personalized academic guidance, no previous reviews have synthesized the diverse methodologies in this field. Following the Kitchenham…
Descriptors: Artificial Intelligence, Higher Education, Career Guidance, Models
Frank Lee; Alex Algarra – Information Systems Education Journal, 2025
This case study examines employee attrition, its detrimental effects on businesses, and the potential of data analytics to address this challenge. By employing Latent Dirichlet Allocation (LDA), a sophisticated NLP technique, we delve into the underlying reasons for employee departures. Additionally, we explore using RapidMiner to develop…
Descriptors: Labor Turnover, Data Analysis, Natural Language Processing, Employees
Zhenchang Xia; Nan Dong; Jia Wu; Chuanguo Ma – IEEE Transactions on Learning Technologies, 2024
As an excellent means of improving students' effective learning, knowledge tracking can assess the level of knowledge mastery and discover latent learning patterns based on students' historical learning evaluation of related questions. The advantage of knowledge tracking is that it can better organize and adjust students' learning plans, provide…
Descriptors: Graphs, Artificial Intelligence, Multivariate Analysis, Prediction
Abdessamad Chanaa; Nour-eddine El Faddouli – Smart Learning Environments, 2024
The recommendation is an active area of scientific research; it is also a challenging and fundamental problem in online education. However, classical recommender systems usually suffer from item cold-start issues. Besides, unlike other fields like e-commerce or entertainment, e-learning recommendations must ensure that learners have the adequate…
Descriptors: Artificial Intelligence, Prerequisites, Metadata, Electronic Learning
Edmonds, Bruce – International Journal of Social Research Methodology, 2023
This paper looks at the tension between the desire to claim predictive ability for Agent-Based Models (ABMs) and its extreme difficulty for social and ecological systems, suggesting that this is the main cause for the continuance of a rhetoric of prediction that is at odds with what is achievable. Following others, it recommends that it is better…
Descriptors: Models, Prediction, Evaluation Methods, Standards
Lottridge, Susan; Woolf, Sherri; Young, Mackenzie; Jafari, Amir; Ormerod, Chris – Journal of Computer Assisted Learning, 2023
Background: Deep learning methods, where models do not use explicit features and instead rely on implicit features estimated during model training, suffer from an explainability problem. In text classification, saliency maps that reflect the importance of words in prediction are one approach toward explainability. However, little is known about…
Descriptors: Documentation, Learning Strategies, Models, Prediction
Hmedna, Brahim; Bakki, Aicha; Mezouary, Ali El; Baz, Omar – Smart Learning Environments, 2023
Massive Open Online Courses (MOOCs) are revolutionizing online education and have become a popular teaching platform. However, traditional MOOCs often overlook learners' individual needs and preferences when designing learning materials and activities, resulting in suboptimal learning experiences. To address this issue, this paper proposes an…
Descriptors: MOOCs, Student Attitudes, Preferences, Cognitive Style
Venera Nakhipova; Yerzhan Kerimbekov; Zhanat Umarova; Halil ibrahim Bulbul; Laura Suleimenova; Elvira Adylbekova – International Journal of Information and Communication Technology Education, 2024
This article introduces a novel method that integrates collaborative filtering into the naive Bayes model to enhance predicting student academic performance. The combined approach leverages collaborative user behavior analysis and probabilistic modeling, showing promising results in improved prediction precision. Collaborative Filtering explores…
Descriptors: Academic Achievement, Prediction, Cooperation, Behavior
Jihong Zhang; Jonathan Templin; Xinya Liang – Journal of Educational Measurement, 2024
Recently, Bayesian diagnostic classification modeling has been becoming popular in health psychology, education, and sociology. Typically information criteria are used for model selection when researchers want to choose the best model among alternative models. In Bayesian estimation, posterior predictive checking is a flexible Bayesian model…
Descriptors: Bayesian Statistics, Cognitive Measurement, Models, Classification
Caihong Feng; Jingyu Liu; Jianhua Wang; Yunhong Ding; Weidong Ji – Education and Information Technologies, 2025
Student academic performance prediction is a significant area of study in the realm of education that has drawn the interest and investigation of numerous scholars. The current approaches for student academic performance prediction mainly rely on the educational information provided by educational system, ignoring the information on students'…
Descriptors: Academic Achievement, Prediction, Models, Student Behavior
Kajal Mahawar; Punam Rattan – Education and Information Technologies, 2025
Higher education institutions have consistently strived to provide students with top-notch education. To achieve better outcomes, machine learning (ML) algorithms greatly simplify the prediction process. ML can be utilized by academicians to obtain insight into student data and mine data for forecasting the performance. In this paper, the authors…
Descriptors: Electronic Learning, Artificial Intelligence, Academic Achievement, Prediction
Hosek, James; Knapp, David; Mattock, Michael G.; Asch, Beth J. – Educational Researcher, 2023
Retirement incentives are frequently used by school districts facing financial difficulties. They provide a means of either decreasing staff size or replacing retiring senior teachers with less expensive junior teachers. We analyze a one-time retirement incentive in a large school district paid to teachers willing to retire at the end of the…
Descriptors: Incentives, Teacher Retirement, Compensation (Remuneration), Prediction
Senthil Kumaran, V.; Malar, B. – Interactive Learning Environments, 2023
Churn in e-learning refers to learners who gradually perform less and become lethargic and may potentially drop out from the course. Churn prediction is a highly sensitive and critical task in an e-learning system because inaccurate predictions might cause undesired consequences. A lot of approaches proposed in the literature analyzed and modeled…
Descriptors: Electronic Learning, Dropouts, Accuracy, Classification
Thanh Thuy Do; Golnoosh Babaei; Paolo Pagnottoni – Measurement: Interdisciplinary Research and Perspectives, 2024
Complex Machine Learning (ML) models used to support decision-making in peer-to-peer (P2P) lending often lack clear, accurate, and interpretable explanations. While the game-theoretic concept of Shapley values and its computationally efficient variant Kernel SHAP may be employed for this aim, similarly to other existing methods, the latter makes…
Descriptors: Artificial Intelligence, Risk Management, Credit (Finance), Prediction