NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 139 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Silva, Hernán A.; Quezada, Luis E.; Oddershede, A. M.; Palominos, Pedro I.; O'Brien, Christopher – Journal of College Student Retention: Research, Theory & Practice, 2023
The objective of this paper is the design of a predictive model of students' desertion in Educational Institutions based on the Analytic Hierarchy Process (AHP). The proposed model is based on a weighted sum of individual probabilities of desertion associated with various factors (explanatory variables) by experts in the combined use of the AHP…
Descriptors: Foreign Countries, Prediction, Models, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Long, J. Scott; Mustillo, Sarah A. – Sociological Methods & Research, 2021
Methods for group comparisons using predicted probabilities and marginal effects on probabilities are developed for regression models for binary outcomes. Unlike approaches based on the comparison of regression coefficients across groups, the methods we propose are unaffected by the scalar identification of the coefficients and are expressed in…
Descriptors: Regression (Statistics), Comparative Analysis, Probability, Groups
Peer reviewed Peer reviewed
Direct linkDirect link
Jennifer L. Proper; Haitao Chu; Purvi Prajapati; Michael D. Sonksen; Thomas A. Murray – Research Synthesis Methods, 2024
Drug repurposing refers to the process of discovering new therapeutic uses for existing medicines. Compared to traditional drug discovery, drug repurposing is attractive for its speed, cost, and reduced risk of failure. However, existing approaches for drug repurposing involve complex, computationally-intensive analytical methods that are not…
Descriptors: Network Analysis, Meta Analysis, Prediction, Drug Therapy
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Han Du; Brian Keller; Egamaria Alacam; Craig Enders – Grantee Submission, 2023
In Bayesian statistics, the most widely used criteria of Bayesian model assessment and comparison are Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC). A multilevel mediation model is used as an illustrative example to compare different types of DIC and WAIC. More specifically, the study compares the…
Descriptors: Bayesian Statistics, Models, Comparative Analysis, Probability
Matthew Jannetti; Amy Carroll-Scott; Erikka Gilliam; Irene Headen; Maggie Beverly; Félice Lê-Scherban – Field Methods, 2023
Place-based initiatives often use resident surveys to inform and evaluate interventions. Sampling based on well-defined sampling frames is important but challenging for initiatives that target subpopulations. Databases that enumerate total population counts can produce overinclusive sampling frames, resulting in costly outreach to ineligible…
Descriptors: Sampling, Probability, Definitions, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Fay, Derek M.; Levy, Roy; Schulte, Ann C. – Journal of Experimental Education, 2022
Longitudinal data structures are frequently encountered in a variety of disciplines in the social and behavioral sciences. Growth curve modeling offers a highly extensible framework that allows for the exploration of rich hypotheses. However, owing to the presence of interrelated sources of potential data-model misfit at multiple levels, the…
Descriptors: Measurement, Models, Bayesian Statistics, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Baneres, David; Rodriguez-Gonzalez, M. Elena; Guerrero-Roldan, Ana Elena – IEEE Transactions on Learning Technologies, 2023
Course dropout is a concern in online higher education, mainly in first-year courses when different factors negatively influence the learners' engagement leading to an unsuccessful outcome or even dropping out from the university. The early identification of such potential at-risk learners is the key to intervening and trying to help them before…
Descriptors: Prediction, Models, Identification, Potential Dropouts
David Kaplan; Kjorte Harra – OECD Publishing, 2023
This report aims to showcase the value of implementing a Bayesian framework to analyse and report results from international large-scale surveys and provide guidance to users who want to analyse the data using this approach. The motivation for this report stems from the recognition that Bayesian statistical inference is fast becoming a popular…
Descriptors: Bayesian Statistics, Statistical Inference, Data Analysis, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Soltys, Michael; Dang, Hung D.; Reyes Reilly, Ginger; Soltys, Katharine – Strategic Enrollment Management Quarterly, 2021
A Machine Learning framework for predicting enrollment is proposed. The framework consists of Amazon Web Services SageMaker together with standard Python tools for data analytics, including Pandas, NumPy, MatPlotLib, and ScikitLearn. The tools are deployed with Jupyter Notebooks running on AWS SageMaker. Based on three years of enrollment history,…
Descriptors: Enrollment Management, Strategic Planning, Prediction, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Hinterecker, Thomas; Knauff, Markus; Johnson-Laird, P. N. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2019
Individuals draw conclusions about possibilities from assertions that make no explicit reference to them. The model theory postulates that assertions such as disjunctions refer to possibilities. Hence, a disjunction of the sort, "A or B or both," where "A" and "B" are sensible clauses, yields mental models of an…
Descriptors: Logical Thinking, Abstract Reasoning, Inferences, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Krefeld-Schwalb, Antonia; Donkin, Chris; Newell, Ben R.; Scheibehenne, Benjamin – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2019
Past research indicates that individuals respond adaptively to contextual factors in multiattribute choice tasks. Yet it remains unclear how this adaptation is cognitively governed. In this article, empirically testable implementations of two prominent competing theoretical frameworks are developed and compared across two multiattribute choice…
Descriptors: Models, Cues, Probability, Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Meng, Lingling; Zhang, Mingxin; Zhang, Wanxue; Chu, Yu – Interactive Learning Environments, 2021
Bayesian knowledge tracing model (BKT) is a typical student knowledge assessment method. It is widely used in intelligent tutoring systems. In the standard BKT model, all knowledge and skills are independent of each other. However, in the process of student learning, they have a very close relation. A student may understand knowledge B better when…
Descriptors: Bayesian Statistics, Intelligent Tutoring Systems, Student Evaluation, Knowledge Level
Peer reviewed Peer reviewed
Direct linkDirect link
Oaksford, Mike; Over, David; Cruz, Nicole – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2019
Hinterecker, Knauff, and Johnson-Laird (2016) compared the adequacy of the probabilistic new paradigm in reasoning with the recent revision of mental models theory (MMT) for explaining a novel class of inferences containing the modal term "possibly." For example, "the door is closed or the window is open or both," therefore,…
Descriptors: Models, Probability, Inferences, Logical Thinking
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhang, Qiao; Maclellan, Christopher J. – International Educational Data Mining Society, 2021
Knowledge tracing algorithms are embedded in Intelligent Tutoring Systems (ITS) to keep track of students' learning process. While knowledge tracing models have been extensively studied in offline settings, very little work has explored their use in online settings. This is primarily because conducting experiments to evaluate and select knowledge…
Descriptors: Electronic Learning, Mastery Learning, Computer Simulation, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Suh, Jihyun; Bugg, Julie M. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2021
Existing approaches in the literature on cognitive control in conflict tasks almost exclusively target the outcome of control (by comparing mean congruency effects) and not the processes that shape control. These approaches are limited in addressing a current theoretical issue--what contribution does learning make to adjustments in cognitive…
Descriptors: Cognitive Processes, Comparative Analysis, Conflict, Learning Processes
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10