Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 10 |
Descriptor
Bayesian Statistics | 11 |
Monte Carlo Methods | 11 |
Prediction | 11 |
Models | 4 |
Goodness of Fit | 3 |
Sample Size | 3 |
Structural Equation Models | 3 |
Bias | 2 |
Decision Making | 2 |
Hierarchical Linear Modeling | 2 |
Item Response Theory | 2 |
More ▼ |
Source
Grantee Submission | 4 |
Journal of Educational… | 1 |
Journal of Educational and… | 1 |
Journal of Experimental… | 1 |
Journal of Experimental… | 1 |
Planning and Changing | 1 |
Psychological Methods | 1 |
Research Synthesis Methods | 1 |
Author
Asparouhov, Tihomir | 1 |
Bonifay, Wes | 1 |
Brian T. Keller | 1 |
Cai, Li | 1 |
Cain, Meghan K. | 1 |
Craig K. Enders | 1 |
Cunningham, William A. | 1 |
Depaoli, Sarah | 1 |
Falben, Johanna K. | 1 |
Fay, Derek M. | 1 |
Golubickis, Marius | 1 |
More ▼ |
Publication Type
Reports - Research | 7 |
Journal Articles | 6 |
Information Analyses | 1 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 1 |
Audience
Location
United Kingdom | 1 |
United Kingdom (Scotland) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Brian T. Keller; Craig K. Enders – Grantee Submission, 2023
A growing body of literature has focused on missing data methods that factorize the joint distribution into a part representing the analysis model of interest and a part representing the distributions of the incomplete predictors. Relatively little is known about the utility of this method for multilevel models with interactive effects. This study…
Descriptors: Data Analysis, Hierarchical Linear Modeling, Monte Carlo Methods, Bias
Qi, Hongchao; Rizopoulos, Dimitris; Rosmalen, Joost – Research Synthesis Methods, 2023
The meta-analytic-predictive (MAP) approach is a Bayesian method to incorporate historical controls in new trials that aims to increase the statistical power and reduce the required sample size. Here we investigate how to calculate the sample size of the new trial when historical data is available, and the MAP approach is used in the analysis. In…
Descriptors: Sample Size, Computation, Meta Analysis, Bayesian Statistics
Joo, Seang-Hwane; Lee, Philseok – Journal of Educational Measurement, 2022
Abstract This study proposes a new Bayesian differential item functioning (DIF) detection method using posterior predictive model checking (PPMC). Item fit measures including infit, outfit, observed score distribution (OSD), and Q1 were considered as discrepancy statistics for the PPMC DIF methods. The performance of the PPMC DIF method was…
Descriptors: Test Items, Bayesian Statistics, Monte Carlo Methods, Prediction
Fay, Derek M.; Levy, Roy; Schulte, Ann C. – Journal of Experimental Education, 2022
Longitudinal data structures are frequently encountered in a variety of disciplines in the social and behavioral sciences. Growth curve modeling offers a highly extensible framework that allows for the exploration of rich hypotheses. However, owing to the presence of interrelated sources of potential data-model misfit at multiple levels, the…
Descriptors: Measurement, Models, Bayesian Statistics, Hierarchical Linear Modeling
Bonifay, Wes; Depaoli, Sarah – Grantee Submission, 2021
Statistical analysis of categorical data often relies on multiway contingency tables; yet, as the number of categories and/or variables increases, the number of table cells with few (or zero) observations also increases. Unfortunately, sparse contingency tables invalidate the use of standard good-ness-of-fit statistics. Limited-information fit…
Descriptors: Bayesian Statistics, Models, Measurement Techniques, Item Response Theory
Cain, Meghan K.; Zhang, Zhiyong – Grantee Submission, 2018
Despite its importance to structural equation modeling, model evaluation remains underdeveloped in the Bayesian SEM framework. Posterior predictive p-values (PPP) and deviance information criteria (DIC) are now available in popular software for Bayesian model evaluation, but they remain under-utilized. This is largely due to the lack of…
Descriptors: Bayesian Statistics, Structural Equation Models, Monte Carlo Methods, Sample Size
Liu, Yang; Yang, Ji Seung – Journal of Educational and Behavioral Statistics, 2018
The uncertainty arising from item parameter estimation is often not negligible and must be accounted for when calculating latent variable (LV) scores in item response theory (IRT). It is particularly so when the calibration sample size is limited and/or the calibration IRT model is complex. In the current work, we treat two-stage IRT scoring as a…
Descriptors: Intervals, Scores, Item Response Theory, Bayesian Statistics
Golubickis, Marius; Falben, Johanna K.; Cunningham, William A.; Macrae, C. Neil – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2018
Although ownership is acknowledged to exert a potent influence on various aspects of information processing, the origin of these effects remains largely unknown. Based on the demonstration that self-relevance facilitates perceptual judgments (i.e., the self-prioritization effect), here we explored the possibility that ownership enhances object…
Descriptors: Ownership, Self Concept, Stimuli, Responses
Lee, Taehun; Cai, Li; Kuhfeld, Megan – Grantee Submission, 2016
Posterior Predictive Model Checking (PPMC) is a Bayesian model checking method that compares the observed data to (plausible) future observations from the posterior predictive distribution. We propose an alternative to PPMC in the context of structural equation modeling, which we term the Poor Persons PPMC (PP-PPMC), for the situation wherein one…
Descriptors: Structural Equation Models, Bayesian Statistics, Prediction, Monte Carlo Methods
Muthen, Bengt; Asparouhov, Tihomir – Psychological Methods, 2012
This article proposes a new approach to factor analysis and structural equation modeling using Bayesian analysis. The new approach replaces parameter specifications of exact zeros with approximate zeros based on informative, small-variance priors. It is argued that this produces an analysis that better reflects substantive theories. The proposed…
Descriptors: Factor Analysis, Cognitive Ability, Science Achievement, Structural Equation Models

Thornton, Gayle D.; And Others – Planning and Changing, 1975
Focuses on three management tools--the Delphi technique, Bayesian statistics, and Monte Carlo simulation--in order to simulate a problem-solving/decision-making situation with which an educational administrator may be faced. (Author)
Descriptors: Bayesian Statistics, Decision Making, Educational Administration, Elementary Secondary Education