NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Uglanova, Irina – Practical Assessment, Research & Evaluation, 2021
There is increased use of Bayesian networks (BN) in educational assessment. In psychometrics, BN serves as a measurement model with high flexibility, suitable to model educational assessment data with a complex structure. BN is a novel psychometric approach and not all aspects of its application are well-known. The article aims to provide the…
Descriptors: Bayesian Statistics, Educational Assessment, Psychometrics, Criticism
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi Pu; Yu Yan; Brandon Zhang – Journal of Educational Data Mining, 2024
We propose a novel model, Wide & Deep Item Response Theory (Wide & Deep IRT), to predict the correctness of students' responses to questions using historical clickstream data. This model combines the strengths of conventional Item Response Theory (IRT) models and Wide & Deep Learning for Recommender Systems. By leveraging clickstream…
Descriptors: Prediction, Success, Data Analysis, Learning Analytics
Peer reviewed Peer reviewed
Castellan, N. John, Jr. – Psychometrika, 1973
This paper discusses the Lens Model' approach to the analysis of subject performance in multiple-cue judgment tasks embedded in probabilistic environments. (Author/RK)
Descriptors: Analysis of Covariance, Bayesian Statistics, Data Analysis, Mathematical Models
Chung, Gregory K. W. K.; Dionne, Gary B.; Kaiser, William J. – Online Submission, 2006
Our research question was whether we could develop a feasible technique, using Bayesian networks, to diagnose gaps in student knowledge. Thirty-four college-age participants completed tasks designed to measure conceptual knowledge, procedural knowledge, and problem-solving skills related to circuit analysis. A Bayesian network was used to model…
Descriptors: Discovery Processes, Feasibility Studies, Bayesian Statistics, Prediction