Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 11 |
Since 2006 (last 20 years) | 20 |
Descriptor
Bayesian Statistics | 20 |
Prediction | 20 |
Regression (Statistics) | 20 |
Models | 8 |
Comparative Analysis | 7 |
Correlation | 7 |
Data Analysis | 6 |
Classification | 5 |
Artificial Intelligence | 4 |
Computer Software | 4 |
Decision Making | 4 |
More ▼ |
Source
Author
Foorman, Barbara R. | 2 |
Kershaw, Sarah | 2 |
Koon, Sharon | 2 |
Petscher, Yaacov | 2 |
Aleven, Vincent | 1 |
Barnes, Tiffany, Ed. | 1 |
Bozpolat, Ebru | 1 |
Brian T. Keller | 1 |
Calders, Toon | 1 |
Conati, Cristina | 1 |
Craig K. Enders | 1 |
More ▼ |
Publication Type
Journal Articles | 11 |
Reports - Research | 11 |
Reports - Evaluative | 6 |
Collected Works - Proceedings | 2 |
Speeches/Meeting Papers | 2 |
Dissertations/Theses -… | 1 |
Education Level
Higher Education | 5 |
Elementary Secondary Education | 4 |
Postsecondary Education | 4 |
Secondary Education | 4 |
Elementary Education | 3 |
Grade 10 | 3 |
Grade 4 | 3 |
Grade 7 | 3 |
Grade 8 | 3 |
Grade 9 | 3 |
Grade 3 | 2 |
More ▼ |
Audience
Location
Florida | 2 |
Netherlands | 2 |
Australia | 1 |
Czech Republic | 1 |
Israel | 1 |
Massachusetts | 1 |
Missouri | 1 |
North Carolina | 1 |
Pennsylvania | 1 |
Slovakia | 1 |
Spain | 1 |
More ▼ |
Laws, Policies, & Programs
Elementary and Secondary… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Xia, Xiaona – Interactive Learning Environments, 2023
The research of multi-category learning behaviors is a hot issue in interactive learning environment, and there are many challenges in data statistics and relationship modeling. We select the massive learning behaviors data of multiple periods and courses and study the decision application of regression analysis. First, based on the definition of…
Descriptors: Learning Analytics, Decision Making, Regression (Statistics), Bayesian Statistics
Denisa Gandara; Hadis Anahideh – Society for Research on Educational Effectiveness, 2024
Background/Context: Predictive analytics has emerged as an indispensable tool in the education sector, offering insights that can improve student outcomes and inform more equitable policies (Friedler et al., 2019; Kleinberg et al., 2018). However, the widespread adoption of predictive models is hindered by several challenges, including the lack of…
Descriptors: Prediction, Learning Analytics, Ethics, Statistical Bias
Brian T. Keller; Craig K. Enders – Grantee Submission, 2023
A growing body of literature has focused on missing data methods that factorize the joint distribution into a part representing the analysis model of interest and a part representing the distributions of the incomplete predictors. Relatively little is known about the utility of this method for multilevel models with interactive effects. This study…
Descriptors: Data Analysis, Hierarchical Linear Modeling, Monte Carlo Methods, Bias
Kjorte Harra; David Kaplan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The present work focuses on the performance of two types of shrinkage priors--the horseshoe prior and the recently developed regularized horseshoe prior--in the context of inducing sparsity in path analysis and growth curve models. Prior research has shown that these horseshoe priors induce sparsity by at least as much as the "gold…
Descriptors: Structural Equation Models, Bayesian Statistics, Regression (Statistics), Statistical Inference
Guleria, Pratiyush; Sood, Manu – Education and Information Technologies, 2023
Machine Learning concept learns from experiences, inferences and conceives complex queries. Machine learning techniques can be used to develop the educational framework which understands the inputs from students, parents and with intelligence generates the result. The framework integrates the features of Machine Learning (ML), Explainable AI (XAI)…
Descriptors: Artificial Intelligence, Career Counseling, Data Analysis, Employment Potential
Mangino, Anthony A.; Smith, Kendall A.; Finch, W. Holmes; Hernández-Finch, Maria E. – Measurement and Evaluation in Counseling and Development, 2022
A number of machine learning methods can be employed in the prediction of suicide attempts. However, many models do not predict new cases well in cases with unbalanced data. The present study improved prediction of suicide attempts via the use of a generative adversarial network.
Descriptors: Prediction, Suicide, Artificial Intelligence, Networks
Siebrase, Benjamin – ProQuest LLC, 2018
Multilayer perceptron neural networks, Gaussian naive Bayes, and logistic regression classifiers were compared when used to make early predictions regarding one-year college student persistence. Two iterations of each model were built, utilizing a grid search process within 10-fold cross-validation in order to tune model parameters for optimal…
Descriptors: Classification, College Students, Academic Persistence, Bayesian Statistics
Rodrigues, Rodrigo Lins; Ramos, Jorge Luis Cavalcanti; Silva, João Carlos Sedraz; Dourado, Raphael A.; Gomes, Alex Sandro – International Journal of Distance Education Technologies, 2019
The increasing use of the Learning Management Systems (LMSs) is making available an ever-growing, volume of data from interactions between teachers and students. This study aimed to develop a model capable of predicting students' academic performance based on indicators of their self-regulated behavior in LMSs. To accomplish this goal, the authors…
Descriptors: Management Systems, Teacher Student Relationship, Distance Education, College Students
Karabatsos, George; Talbott, Elizabeth; Walker, Stephen G. – Research Synthesis Methods, 2015
In a meta-analysis, it is important to specify a model that adequately describes the effect-size distribution of the underlying population of studies. The conventional normal fixed-effect and normal random-effects models assume a normal effect-size population distribution, conditionally on parameters and covariates. For estimating the mean overall…
Descriptors: Bayesian Statistics, Meta Analysis, Prediction, Nonparametric Statistics
Bozpolat, Ebru – Educational Sciences: Theory and Practice, 2016
The purpose of this study was to reveal whether the low, medium, and high level self-regulated learning strategies of third year students at the Education Faculty of Cumhuriyet University can be predicted by the variables of gender, academic self-efficacy, and general academic average. The study uses the Relational Screening Model. The dependent…
Descriptors: Learning Strategies, Self Efficacy, Foreign Countries, Gender Differences
Xu, Yanbo; Mostow, Jack – International Educational Data Mining Society, 2012
A long-standing challenge for knowledge tracing is how to update estimates of multiple subskills that underlie a single observable step. We characterize approaches to this problem by how they model knowledge tracing, fit its parameters, predict performance, and update subskill estimates. Previous methods allocated blame or credit among subskills…
Descriptors: Teaching Methods, Comparative Analysis, Prediction, Mathematics
Geary, David C.; vanMarle, Kristy – Developmental Psychology, 2016
At the beginning of preschool (M = 46 months of age), 197 (94 boys) children were administered tasks that assessed a suite of nonsymbolic and symbolic quantitative competencies as well as their executive functions, verbal and nonverbal intelligence, preliteracy skills, and their parents' education level. The children's mathematics achievement was…
Descriptors: Young Children, Mathematics, Mathematics Achievement, Mathematics Education
Goldin, Ilya M.; Koedinger, Kenneth R.; Aleven, Vincent – International Educational Data Mining Society, 2012
Although ITSs are supposed to adapt to differences among learners, so far, little attention has been paid to how they might adapt to differences in how students learn from help. When students study with an Intelligent Tutoring System, they may receive multiple types of help, but may not comprehend and make use of this help in the same way. To…
Descriptors: Performance Factors, Intelligent Tutoring Systems, Individual Differences, Prediction
Valdés Aguirre, Benjamín; Ramírez Uresti, Jorge A.; du Boulay, Benedict – International Journal of Artificial Intelligence in Education, 2016
Sharing user information between systems is an area of interest for every field involving personalization. Recommender Systems are more advanced in this aspect than Intelligent Tutoring Systems (ITSs) and Intelligent Learning Environments (ILEs). A reason for this is that the user models of Intelligent Tutoring Systems and Intelligent Learning…
Descriptors: Intelligent Tutoring Systems, Models, Open Source Technology, Computers
Petscher, Yaacov; Kershaw, Sarah; Koon, Sharon; Foorman, Barbara R. – Regional Educational Laboratory Southeast, 2014
Districts and schools use progress monitoring to assess student progress, to identify students who fail to respond to intervention, and to further adapt instruction to student needs. Researchers and practitioners often use progress monitoring data to estimate student achievement growth (slope) and evaluate changes in performance over time for…
Descriptors: Reading Comprehension, Reading Achievement, Elementary School Students, Secondary School Students
Previous Page | Next Page »
Pages: 1 | 2