Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 7 |
Descriptor
Bayesian Statistics | 7 |
Prediction | 7 |
Research Problems | 7 |
Models | 6 |
Probability | 4 |
Goodness of Fit | 3 |
Statistical Inference | 3 |
Computation | 2 |
Hierarchical Linear Modeling | 2 |
Identification | 2 |
Learning | 2 |
More ▼ |
Source
Grantee Submission | 2 |
International Educational… | 1 |
Measurement:… | 1 |
OECD Publishing | 1 |
Practical Assessment,… | 1 |
Review of Educational Research | 1 |
Author
Brunskill, Emma | 2 |
Doroudi, Shayan | 2 |
Ames, Allison J. | 1 |
Baek, Eunkyeng | 1 |
Brian Keller | 1 |
Chen, Siqi | 1 |
Craig Enders | 1 |
David Kaplan | 1 |
Egamaria Alacam | 1 |
Han Du | 1 |
Kjorte Harra | 1 |
More ▼ |
Publication Type
Reports - Research | 5 |
Journal Articles | 3 |
Speeches/Meeting Papers | 2 |
Information Analyses | 1 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
Teaching and Learning… | 1 |
What Works Clearinghouse Rating
Han Du; Brian Keller; Egamaria Alacam; Craig Enders – Grantee Submission, 2023
In Bayesian statistics, the most widely used criteria of Bayesian model assessment and comparison are Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC). A multilevel mediation model is used as an illustrative example to compare different types of DIC and WAIC. More specifically, the study compares the…
Descriptors: Bayesian Statistics, Models, Comparative Analysis, Probability
David Kaplan; Kjorte Harra – OECD Publishing, 2023
This report aims to showcase the value of implementing a Bayesian framework to analyse and report results from international large-scale surveys and provide guidance to users who want to analyse the data using this approach. The motivation for this report stems from the recognition that Bayesian statistical inference is fast becoming a popular…
Descriptors: Bayesian Statistics, Statistical Inference, Data Analysis, Educational Research
Uglanova, Irina – Practical Assessment, Research & Evaluation, 2021
There is increased use of Bayesian networks (BN) in educational assessment. In psychometrics, BN serves as a measurement model with high flexibility, suitable to model educational assessment data with a complex structure. BN is a novel psychometric approach and not all aspects of its application are well-known. The article aims to provide the…
Descriptors: Bayesian Statistics, Educational Assessment, Psychometrics, Criticism
Luo, Wen; Li, Haoran; Baek, Eunkyeng; Chen, Siqi; Lam, Kwok Hap; Semma, Brandie – Review of Educational Research, 2021
Multilevel modeling (MLM) is a statistical technique for analyzing clustered data. Despite its long history, the technique and accompanying computer programs are rapidly evolving. Given the complexity of multilevel models, it is crucial for researchers to provide complete and transparent descriptions of the data, statistical analyses, and results.…
Descriptors: Hierarchical Linear Modeling, Multivariate Analysis, Prediction, Research Problems
Ames, Allison J. – Measurement: Interdisciplinary Research and Perspectives, 2018
Bayesian item response theory (IRT) modeling stages include (a) specifying the IRT likelihood model, (b) specifying the parameter prior distributions, (c) obtaining the posterior distribution, and (d) making appropriate inferences. The latter stage, and the focus of this research, includes model criticism. Choice of priors with the posterior…
Descriptors: Bayesian Statistics, Item Response Theory, Statistical Inference, Prediction
Doroudi, Shayan; Brunskill, Emma – International Educational Data Mining Society, 2017
In this paper, we investigate two purported problems with Bayesian Knowledge Tracing (BKT), a popular statistical model of student learning: "identifiability" and "semantic model degeneracy." In 2007, Beck and Chang stated that BKT is susceptible to an "identifiability problem"--various models with different…
Descriptors: Bayesian Statistics, Research Problems, Models, Learning
Doroudi, Shayan; Brunskill, Emma – Grantee Submission, 2017
In this paper, we investigate two purported problems with Bayesian Knowledge Tracing (BKT), a popular statistical model of student learning: "identifiability" and "semantic model degeneracy." In 2007, Beck and Chang stated that BKT is susceptible to an "identifiability problem"--various models with different…
Descriptors: Bayesian Statistics, Research Problems, Statistical Analysis, Models