Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 10 |
Descriptor
Prediction | 11 |
Probability | 11 |
Statistical Inference | 11 |
Bayesian Statistics | 6 |
Comparative Analysis | 3 |
Experiments | 3 |
Sampling | 3 |
Case Studies | 2 |
Decision Making | 2 |
Evidence | 2 |
Foreign Countries | 2 |
More ▼ |
Source
Author
Griffiths, Thomas L. | 2 |
Beath, Ken J. | 1 |
Ben-Zvi, Dani | 1 |
Bowers, Jeffrey S. | 1 |
Braham, Hana Manor | 1 |
Chater, Nick | 1 |
David Kaplan | 1 |
Davis, Colin J. | 1 |
Helman, Danny | 1 |
Horng, Andy | 1 |
Hsu, Anne S. | 1 |
More ▼ |
Publication Type
Journal Articles | 10 |
Reports - Evaluative | 5 |
Reports - Research | 5 |
Opinion Papers | 1 |
Reports - Descriptive | 1 |
Education Level
Higher Education | 2 |
Elementary Education | 1 |
Audience
Location
Israel | 1 |
Turkey | 1 |
United States | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of… | 1 |
Teaching and Learning… | 1 |
What Works Clearinghouse Rating
Kaplan, David; Huang, Mingya – Large-scale Assessments in Education, 2021
Of critical importance to education policy is monitoring trends in education outcomes over time. In the United States, the National Assessment of Educational Progress (NAEP) has provided long-term trend data since 1970; at the state/jurisdiction level, NAEP has provided long-term trend data since 1996. In addition to the national NAEP, all 50…
Descriptors: Educational Policy, Educational Trends, National Competency Tests, Bayesian Statistics
David Kaplan; Kjorte Harra – OECD Publishing, 2023
This report aims to showcase the value of implementing a Bayesian framework to analyse and report results from international large-scale surveys and provide guidance to users who want to analyse the data using this approach. The motivation for this report stems from the recognition that Bayesian statistical inference is fast becoming a popular…
Descriptors: Bayesian Statistics, Statistical Inference, Data Analysis, Educational Research
Hsu, Anne S.; Horng, Andy; Griffiths, Thomas L.; Chater, Nick – Cognitive Science, 2017
Identifying patterns in the world requires noticing not only unusual occurrences, but also unusual absences. We examined how people learn from absences, manipulating the extent to which an absence is expected. People can make two types of inferences from the absence of an event: either the event is possible but has not yet occurred, or the event…
Descriptors: Statistical Inference, Bayesian Statistics, Evidence, Prediction
Kazak, Sibel; Pratt, Dave – Statistics Education Research Journal, 2017
This study considers probability models as tools for both making informal statistical inferences and building stronger conceptual connections between data and chance topics in teaching statistics. In this paper, we aim to explore pre-service mathematics teachers' use of probability models for a chance game, where the sum of two dice matters in…
Descriptors: Preservice Teachers, Probability, Mathematical Models, Statistical Inference
Braham, Hana Manor; Ben-Zvi, Dani – Statistics Education Research Journal, 2017
A fundamental aspect of statistical inference is representation of real-world data using statistical models. This article analyzes students' articulations of statistical models and modeling during their first steps in making informal statistical inferences. An integrated modeling approach (IMA) was designed and implemented to help students…
Descriptors: Foreign Countries, Elementary School Students, Statistical Inference, Mathematical Models
Beath, Ken J. – Research Synthesis Methods, 2014
When performing a meta-analysis unexplained variation above that predicted by within study variation is usually modeled by a random effect. However, in some cases, this is not sufficient to explain all the variation because of outlier or unusual studies. A previously described method is to define an outlier as a study requiring a higher random…
Descriptors: Mixed Methods Research, Robustness (Statistics), Meta Analysis, Prediction
Lee, Michael D.; Pooley, James P. – Psychological Review, 2013
The scale-invariant memory, perception, and learning (SIMPLE) model developed by Brown, Neath, and Chater (2007) formalizes the theoretical idea that scale invariance is an important organizing principle across numerous cognitive domains and has made an influential contribution to the literature dealing with modeling human memory. In the context…
Descriptors: Recall (Psychology), Memory, Models, Equations (Mathematics)
Noll, Jennifer; Shaughnessy, J. Michael – Journal for Research in Mathematics Education, 2012
Sampling tasks and sampling distributions provide a fertile realm for investigating students' conceptions of variability. A project-designed teaching episode on samples and sampling distributions was team-taught in 6 research classrooms (2 middle school and 4 high school) by the investigators and regular classroom mathematics teachers. Data…
Descriptors: Sampling, Mathematics Teachers, Middle Schools, High Schools
Bowers, Jeffrey S.; Davis, Colin J. – Psychological Bulletin, 2012
According to Bayesian theories in psychology and neuroscience, minds and brains are (near) optimal in solving a wide range of tasks. We challenge this view and argue that more traditional, non-Bayesian approaches are more promising. We make 3 main arguments. First, we show that the empirical evidence for Bayesian theories in psychology is weak.…
Descriptors: Bayesian Statistics, Psychology, Brain, Theories
Griffiths, Thomas L.; Tenenbaum, Joshua B. – Cognition, 2007
People's reactions to coincidences are often cited as an illustration of the irrationality of human reasoning about chance. We argue that coincidences may be better understood in terms of rational statistical inference, based on their functional role in processes of causal discovery and theory revision. We present a formal definition of…
Descriptors: Probability, Statistical Inference, Bayesian Statistics, Theories
Helman, Danny – Teaching Statistics: An International Journal for Teachers, 2004
The national lottery is often portrayed as a game of pure chance with no room for strategy. This misperception seems to stem from the application of probability instead of expectancy considerations, and can be utilized to introduce the statistical concept of expectation.
Descriptors: Probability, Expectation, Statistics, Statistical Inference