Publication Date
In 2025 | 1 |
Since 2024 | 6 |
Since 2021 (last 5 years) | 8 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 8 |
Descriptor
Algorithms | 8 |
Prediction | 8 |
Student Characteristics | 8 |
Accuracy | 5 |
Artificial Intelligence | 5 |
At Risk Students | 4 |
Learning Analytics | 4 |
Models | 4 |
Academic Achievement | 3 |
Attendance | 3 |
Classification | 3 |
More ▼ |
Source
Society for Research on… | 2 |
Computer-Based Learning in… | 1 |
Education and Information… | 1 |
IEEE Transactions on Learning… | 1 |
Interactive Learning… | 1 |
International Journal of… | 1 |
Turkish Online Journal of… | 1 |
Author
A. Brooks Bowden | 1 |
Anika Alam | 1 |
Chenglong Wang | 1 |
Christina Weiland | 1 |
Dongkun Han | 1 |
Hans-Georg Müller | 1 |
Jamiu Adekunle Idowu | 1 |
Jialun Pan | 1 |
Katharina Simbeck | 1 |
Khatibi, Toktam | 1 |
Linda Fernsel | 1 |
More ▼ |
Publication Type
Journal Articles | 6 |
Reports - Research | 6 |
Information Analyses | 2 |
Education Level
Elementary Education | 3 |
Higher Education | 2 |
Postsecondary Education | 2 |
Early Childhood Education | 1 |
Grade 10 | 1 |
Grade 3 | 1 |
Grade 6 | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
Grade 9 | 1 |
High Schools | 1 |
More ▼ |
Audience
Location
Hong Kong | 1 |
Massachusetts (Boston) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Jialun Pan; Zhanzhan Zhao; Dongkun Han – IEEE Transactions on Learning Technologies, 2025
Properly predicting students' academic performance is crucial for elevating educational outcomes in various disciplines. Through precise performance prediction, schools can quickly pinpoint students facing challenges and provide customized educational materials suited to their specific learning needs. The reliance on teachers' experience to…
Descriptors: Prediction, Academic Achievement, At Risk Students, Artificial Intelligence
Nathalie Rzepka; Linda Fernsel; Hans-Georg Müller; Katharina Simbeck; Niels Pinkwart – Computer-Based Learning in Context, 2023
Algorithms and machine learning models are being used more frequently in educational settings, but there are concerns that they may discriminate against certain groups. While there is some research on algorithmic fairness, there are two main issues with the current research. Firstly, it often focuses on gender and race and ignores other groups.…
Descriptors: Algorithms, Artificial Intelligence, Models, Bias
Siu-Cheung Kong; Wei Shen – Interactive Learning Environments, 2024
Logistic regression models have traditionally been used to identify the factors contributing to students' conceptual understanding. With the advancement of the machine learning-based research approach, there are reports that some machine learning algorithms outperform logistic regression models in terms of prediction. In this study, we collected…
Descriptors: Student Characteristics, Predictor Variables, Comprehension, Computation
Jamiu Adekunle Idowu – International Journal of Artificial Intelligence in Education, 2024
This systematic literature review investigates the fairness of machine learning algorithms in educational settings, focusing on recent studies and their proposed solutions to address biases. Applications analyzed include student dropout prediction, performance prediction, forum post classification, and recommender systems. We identify common…
Descriptors: Algorithms, Dropouts, Prediction, Academic Achievement
Construction and Analysis of a Decision Tree-Based Predictive Model for Learning Intervention Advice
Chenglong Wang – Turkish Online Journal of Educational Technology - TOJET, 2024
The rapid development of education informatization has accumulated a large amount of data for learning analytics, and adopting educational data mining to find new patterns of data, develop new algorithms and models, and apply known predictive models to the teaching system to improve learning is the challenge and vision of the education field in…
Descriptors: Decision Making, Prediction, Models, Intervention
Parhizkar, Amirmohammad; Tejeddin, Golnaz; Khatibi, Toktam – Education and Information Technologies, 2023
Increasing productivity in educational systems is of great importance. Researchers are keen to predict the academic performance of students; this is done to enhance the overall productivity of educational system by effectively identifying students whose performance is below average. This universal concern has been combined with data science…
Descriptors: Algorithms, Grade Point Average, Interdisciplinary Approach, Prediction
Tiffany Wu; Christina Weiland – Society for Research on Educational Effectiveness, 2024
Background/Context: Chronic absenteeism is a serious problem that has been linked to lower academic achievement, diminished socioemotional skills, and an increased likelihood of high school dropout (Allensworth et al., 2021; Gottfried, 2014). As a result, many schools have begun to embrace early warning systems (EWS) as a tool to identify and flag…
Descriptors: Attendance, Early Childhood Education, Intervention, Artificial Intelligence
Anika Alam; A. Brooks Bowden – Society for Research on Educational Effectiveness, 2024
Background: The importance of high school completion for jobs and postsecondary opportunities is well- documented. Combined with federal laws where high school graduation rate is a core performance indicator, school systems and states face pressure to actively monitor and assess high school completion. This proposal employs machine learning…
Descriptors: Dropout Characteristics, Prediction, Artificial Intelligence, At Risk Students