NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)1
Since 2006 (last 20 years)5
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 7 results Save | Export
Lang, Charles William McLeod – ProQuest LLC, 2015
Personalization, the idea that teaching can be tailored to each students' needs, has been a goal for the educational enterprise for at least 2,500 years (Regian, Shute, & Shute, 2013, p.2). Recently personalization has picked up speed with the advent of mobile computing, the Internet and increases in computer processing power. These changes…
Descriptors: Individualized Instruction, Electronic Learning, Mathematics, Bayesian Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Petscher, Yaacov; Kershaw, Sarah; Koon, Sharon; Foorman, Barbara R. – Regional Educational Laboratory Southeast, 2014
Districts and schools use progress monitoring to assess student progress, to identify students who fail to respond to intervention, and to further adapt instruction to student needs. Researchers and practitioners often use progress monitoring data to estimate student achievement growth (slope) and evaluate changes in performance over time for…
Descriptors: Reading Comprehension, Reading Achievement, Elementary School Students, Secondary School Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Petscher, Yaacov; Kershaw, Sarah; Koon, Sharon; Foorman, Barbara R. – Regional Educational Laboratory Southeast, 2014
Districts and schools use progress monitoring to assess student progress, to identify students who fail to respond to intervention, and to further adapt instruction to student needs. Researchers and practitioners often use progress monitoring data to estimate student achievement growth (slope) and evaluate changes in performance over time for…
Descriptors: Response to Intervention, Achievement Gains, High Stakes Tests, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Bekele, Rahel; McPherson, Maggie – British Journal of Educational Technology, 2011
This research work presents a Bayesian Performance Prediction Model that was created in order to determine the strength of personality traits in predicting the level of mathematics performance of high school students in Addis Ababa. It is an automated tool that can be used to collect information from students for the purpose of effective group…
Descriptors: Foreign Countries, Personality Traits, Mathematics Education, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
Carroll, Stephen J.; Relles, Daniel A. – 1976
Examined are methodologies for modeling students' choices among higher education institutions. A statistical technique called "conditional logit analysis" is applicable to the problem studied. These applications are reviewed and certain weaknesses inherent in the approach are pointed out. Alternative approaches are offered, based on the…
Descriptors: Bayesian Statistics, Comparative Analysis, Data Analysis, Databases
Jones, Paul K.; Novick, Melvin R. – 1972
A summary of the technical problems encountered in performing Bayesian m group regression is given. Grade-point averages for students entering a vocational-technical program are predicted using ability assessments from the Career Planning Profile (CPP), a development of The American College Testing Program (ACT). The theory derived by Lindley (see…
Descriptors: Academic Ability, Bayesian Statistics, Grade Point Average, Mathematical Models