NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Aydin, Burak; Algina, James – Journal of Experimental Education, 2022
Decomposing variables into between and within components are often required in multilevel analysis. This method of decomposition should not ignore possible unreliability of an observed group mean (i.e., arithmetic mean) that is due to small cluster sizes and can lead to substantially biased estimates. Adjustment procedures that allow unbiased…
Descriptors: Hierarchical Linear Modeling, Prediction, Research Methodology, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Aydin, Burak; Leite, Walter L.; Algina, James – Educational and Psychological Measurement, 2016
We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…
Descriptors: Error of Measurement, Predictor Variables, Randomized Controlled Trials, Experimental Groups
Peer reviewed Peer reviewed
Direct linkDirect link
Peters, Christina D.; Kranzler, John H.; Algina, James; Smith, Stephen W.; Daunic, Ann P. – Psychology in the Schools, 2014
The aim of the current study was to examine mean-group differences on behavior rating scales and variables that may predict such differences. Sixty-five teachers completed the Clinical Assessment of Behavior-Teacher Form (CAB-T) for a sample of 982 students. Four outcome variables from the CAB-T were assessed. Hierarchical linear modeling was used…
Descriptors: Disproportionate Representation, Special Education, Hierarchical Linear Modeling, Racial Differences