NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Xinhong Zhang; Xiangyu Wang; Jiayin Zhao; Boyan Zhang; Fan Zhang – IEEE Transactions on Education, 2024
Contribution: This study proposes a student dropout prediction model, named image convolutional and bi-directional temporal convolutional network (IC-BTCN), which makes dropout prediction for learners based on the learning clickstream data of students in massive open online courses (MOOCs) courses. Background: The MOOCs learning platform attracts…
Descriptors: MOOCs, Dropout Characteristics, Dropout Research, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Xiao Wen; Hu Juan – Interactive Learning Environments, 2024
To address three issues identified in previous research this study proposes a clustering-based MOOC dropout identification method and an early prediction model based on deep learning. The MOOC learning behavior of self-paced students was analyzed, and two well-known MOOC datasets were used for analysis and validation. The findings are as follows:…
Descriptors: MOOCs, Dropouts, Dropout Characteristics, Dropout Research
Peer reviewed Peer reviewed
Direct linkDirect link
Melisa Diaz Lema; Melvin Vooren; Marta Cannistrà; Chris van Klaveren; Tommaso Agasisti; Ilja Cornelisz – Studies in Higher Education, 2024
Study success in Higher Education is of primary importance in the European policy agenda. Yet, given the diverse educational landscape across countries and institutions, more coordinated action is needed to gain a more solid knowledge of the dropout phenomenon. This study aims to gain a better insight into students' dropout based on an integrated…
Descriptors: Foreign Countries, Dropout Research, College Students, Dropouts
Peer reviewed Peer reviewed
Direct linkDirect link
Marcell Nagy; Roland Molontay – International Journal of Artificial Intelligence in Education, 2024
Student drop-out is one of the most burning issues in STEM higher education, which induces considerable social and economic costs. Using machine learning tools for the early identification of students at risk of dropping out has gained a lot of interest recently. However, there has been little discussion on dropout prediction using interpretable…
Descriptors: Dropout Characteristics, Dropout Research, Intervention, At Risk Students
Peer reviewed Peer reviewed
Direct linkDirect link
Edwin Buenaño; María José Beletanga; Mónica Mancheno – Journal of Latinos and Education, 2024
University dropout is a serious problem in higher education that is increasingly gaining importance, as it is essential to understand its causes and search for public and institutional policies that can help reduce it. This research uses conventional and extended Cox survival models to analyze the factors behind dropout rates at a co-financed…
Descriptors: Foreign Countries, College Students, Dropouts, Dropout Rate