NotesFAQContact Us
Collection
Advanced
Search Tips
Source
International Educational…11
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wang, Yuancheng; Luo, Nanyu; Zhou, Jianjun – International Educational Data Mining Society, 2022
Doing assignments is a very important part of learning. Students' assignment submission time provides valuable information on study attitudes and habits which strongly correlate with academic performance. However, the number of assignments and their submission deadlines vary among university courses, making it hard to use assignment submission…
Descriptors: College Students, Assignments, Time, Scheduling
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ren, Zhiyun; Ning, Xia; Lan, Andrew S.; Rangwala, Huzefa – International Educational Data Mining Society, 2019
Over the past decade, low graduation and retention rates have plagued higher education institutions. To help students graduate on time and achieve optimal learning outcomes, many institutions provide advising services supported by educational technologies. Accurate grade prediction is an integral part of these services such as degree planning…
Descriptors: Grade Prediction, Undergraduate Students, Prior Learning, Courses
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Morsy, Sara; Karypis, George – International Educational Data Mining Society, 2019
Grade prediction for future courses not yet taken by students is important as it can help them and their advisers during the process of course selection as well as for designing personalized degree plans and modifying them based on their performance. One of the successful approaches for accurately predicting a student's grades in future courses is…
Descriptors: Grades (Scholastic), Models, Prediction, Predictor Variables
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Karumbaiah, Shamya; Baker, Ryan S.; Shute, Valerie – International Educational Data Mining Society, 2018
Identifying struggling students in real-time provides a virtual learning environment with an opportunity to intervene meaningfully with supports aimed at improving student learning and engagement. In this paper, we present a detailed analysis of quit prediction modeling in students playing a learning game called Physics Playground. From the…
Descriptors: Predictor Variables, Academic Persistence, Educational Games, Play
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Coleman, Chad; Baker, Ryan S.; Stephenson, Shonte – International Educational Data Mining Society, 2019
Determining which students are at risk of poorer outcomes -- such as dropping out, failing classes, or decreasing standardized examination scores -- has become an important area of research and practice in both K-12 and higher education. The detectors produced from this type of predictive modeling research are increasingly used in early warning…
Descriptors: Prediction, At Risk Students, Predictor Variables, Elementary Secondary Education
Kumar, Muthu; Kan, Min-Yen; Tan, Bernard C. Y.; Ragupathi, Kiruthika – International Educational Data Mining Society, 2015
With large student enrollment, MOOC instructors face the unique challenge in deciding when to intervene in forum discussions with their limited bandwidth. We study this problem of "instructor intervention." Using a large sample of forum data culled from 61 courses, we design a binary classifier to predict whether an instructor should…
Descriptors: Intervention, Open Education, Large Group Instruction, Group Discussion
Lopez, M. I.; Luna, J. M.; Romero, C.; Ventura, S. – International Educational Data Mining Society, 2012
This paper proposes a classification via clustering approach to predict the final marks in a university course on the basis of forum data. The objective is twofold: to determine if student participation in the course forum can be a good predictor of the final marks for the course and to examine whether the proposed classification via clustering…
Descriptors: Classification, Prediction, Grades (Scholastic), College Freshmen
Olsen, Jennifer K.; Aleven, Vincent; Rummel, Nikol – International Educational Data Mining Society, 2015
Student models for adaptive systems may not model collaborative learning optimally. Past research has either focused on modeling individual learning or for collaboration, has focused on group dynamics or group processes without predicting learning. In the current paper, we adjust the Additive Factors Model (AFM), a standard logistic regression…
Descriptors: Educational Environment, Predictive Measurement, Predictor Variables, Cooperative Learning
Bayer, Jaroslav; Bydzovska, Hana; Geryk, Jan; Obsivac, Tomas; Popelinsky, Lubomir – International Educational Data Mining Society, 2012
This paper focuses on predicting drop-outs and school failures when student data has been enriched with data derived from students social behaviour. These data describe social dependencies gathered from e-mail and discussion board conversations, among other sources. We describe an extraction of new features from both student data and behaviour…
Descriptors: Prediction, Foreign Countries, Predictor Variables, Social Behavior
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Boyer, Kristy Elizabeth, Ed.; Yudelson, Michael, Ed. – International Educational Data Mining Society, 2018
The 11th International Conference on Educational Data Mining (EDM 2018) is held under the auspices of the International Educational Data Mining Society at the Templeton Landing in Buffalo, New York. This year's EDM conference was highly competitive, with 145 long and short paper submissions. Of these, 23 were accepted as full papers and 37…
Descriptors: Data Collection, Data Analysis, Computer Science Education, Program Proposals
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lynch, Collin F., Ed.; Merceron, Agathe, Ed.; Desmarais, Michel, Ed.; Nkambou, Roger, Ed. – International Educational Data Mining Society, 2019
The 12th iteration of the International Conference on Educational Data Mining (EDM 2019) is organized under the auspices of the International Educational Data Mining Society in Montreal, Canada. The theme of this year's conference is EDM in Open-Ended Domains. As EDM has matured it has increasingly been applied to open-ended and ill-defined tasks…
Descriptors: Data Collection, Data Analysis, Information Retrieval, Content Analysis