Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 19 |
Descriptor
Source
Multivariate Behavioral… | 50 |
Author
Publication Type
Journal Articles | 41 |
Reports - Research | 22 |
Reports - Evaluative | 12 |
Reports - Descriptive | 6 |
Speeches/Meeting Papers | 3 |
Opinion Papers | 2 |
Education Level
Higher Education | 4 |
Postsecondary Education | 3 |
Grade 8 | 2 |
Secondary Education | 2 |
Adult Education | 1 |
Elementary Secondary Education | 1 |
Grade 7 | 1 |
Grade 9 | 1 |
High Schools | 1 |
Audience
Location
New Zealand | 1 |
United Kingdom (England) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Wechsler Intelligence Scale… | 2 |
ACT Assessment | 1 |
Burt Word Reading Test | 1 |
Marlowe Crowne Social… | 1 |
SAT (College Admission Test) | 1 |
What Works Clearinghouse Rating
Miller, Jason W.; Stromeyer, William R.; Schwieterman, Matthew A. – Multivariate Behavioral Research, 2013
The past decade has witnessed renewed interest in the use of the Johnson-Neyman (J-N) technique for calculating the regions of significance for the simple slope of a focal predictor on an outcome variable across the range of a second, continuous independent variable. Although tools have been developed to apply this technique to probe 2- and 3-way…
Descriptors: Social Sciences, Regression (Statistics), Predictor Variables, Hierarchical Linear Modeling
Kelcey, Ben – Multivariate Behavioral Research, 2011
This study examined the practical problem of covariate selection in propensity scores (PSs) given a predetermined set of covariates. Because the bias reduction capacity of a confounding covariate is proportional to the concurrent relationships it has with the outcome and treatment, particular focus is set on how we might approximate…
Descriptors: Probability, Scores, Predictor Variables, Selection
Rast, Philippe; Hofer, Scott M.; Sparks, Catharine – Multivariate Behavioral Research, 2012
A mixed effects location scale model was used to model and explain individual differences in within-person variability of negative and positive affect across 7 days (N=178) within a measurement burst design. The data come from undergraduate university students and are pooled from a study that was repeated at two consecutive years. Individual…
Descriptors: Individual Differences, Undergraduate Students, Psychological Patterns, Stress Variables
Kelava, Augustin; Nagengast, Benjamin – Multivariate Behavioral Research, 2012
Structural equation models with interaction and quadratic effects have become a standard tool for testing nonlinear hypotheses in the social sciences. Most of the current approaches assume normally distributed latent predictor variables. In this article, we present a Bayesian model for the estimation of latent nonlinear effects when the latent…
Descriptors: Bayesian Statistics, Computation, Structural Equation Models, Predictor Variables
Olivera-Aguilar, Margarita; Millsap, Roger E. – Multivariate Behavioral Research, 2013
A common finding in studies of differential prediction across groups is that although regression slopes are the same or similar across groups, group differences exist in regression intercepts. Building on earlier work by Birnbaum (1979), Millsap (1998) presented an invariant factor model that would explain such intercept differences as arising due…
Descriptors: Statistical Analysis, Measurement, Prediction, Regression (Statistics)
Shieh, Gwowen – Multivariate Behavioral Research, 2010
Due to its extensive applicability and computational ease, moderated multiple regression (MMR) has been widely employed to analyze interaction effects between 2 continuous predictor variables. Accordingly, considerable attention has been drawn toward the supposed multicollinearity problem between predictor variables and their cross-product term.…
Descriptors: Multiple Regression Analysis, Misconceptions, Predictor Variables, Interaction
Lottridge, Susan M.; Nicewander, W. Alan; Mitzel, Howard C. – Multivariate Behavioral Research, 2011
This inquiry had 2 components: (1) the first was substantive and focused on the comparability of paper-based and computer-based test forms and (2) the second was a within-study comparison wherein a quasi-experimental method, propensity score matching, was compared with a credible benchmark method, a within-subjects design. The tests used in the…
Descriptors: Comparative Analysis, Probability, Scores, Statistical Analysis
Gottschall, Amanda C.; West, Stephen G.; Enders, Craig K. – Multivariate Behavioral Research, 2012
Behavioral science researchers routinely use scale scores that sum or average a set of questionnaire items to address their substantive questions. A researcher applying multiple imputation to incomplete questionnaire data can either impute the incomplete items prior to computing scale scores or impute the scale scores directly from other scale…
Descriptors: Questionnaires, Data Analysis, Computation, Monte Carlo Methods
McArdle, John J.; Paskus, Thomas S.; Boker, Steven M. – Multivariate Behavioral Research, 2013
This is an application of contemporary multilevel regression modeling to the prediction of academic performances of 1st-year college students. At a first level of analysis, the data come from N greater than 16,000 students who were college freshman in 1994-1995 and who were also participants in high-level college athletics. At a second level of…
Descriptors: Multivariate Analysis, Multiple Regression Analysis, Hierarchical Linear Modeling, College Athletics
Beckstead, Jason W. – Multivariate Behavioral Research, 2012
The presence of suppression (and multicollinearity) in multiple regression analysis complicates interpretation of predictor-criterion relationships. The mathematical conditions that produce suppression in regression analysis have received considerable attention in the methodological literature but until now nothing in the way of an analytic…
Descriptors: Multiple Regression Analysis, Predictor Variables, Factor Analysis, Structural Equation Models
Kammeyer-Mueller, John; Steel, Piers D. G.; Rubenstein, Alex – Multivariate Behavioral Research, 2010
Common source bias has been the focus of much attention. To minimize the problem, researchers have sometimes been advised to take measurements of predictors from one observer and measurements of outcomes from another observer or to use separate occasions of measurement. We propose that these efforts to eliminate biases due to common source…
Descriptors: Statistical Bias, Predictor Variables, Measurement, Data Collection
Pek, Jolynn; Sterba, Sonya K.; Kok, Bethany E.; Bauer, Daniel J. – Multivariate Behavioral Research, 2009
The graphical presentation of any scientific finding enhances its description, interpretation, and evaluation. Research involving latent variables is no exception, especially when potential nonlinear effects are suspect. This article has multiple aims. First, it provides a nontechnical overview of a semiparametric approach to modeling nonlinear…
Descriptors: Structural Equation Models, Cognitive Processes, Social Sciences, Evaluation
Reichardt, Charles S. – Multivariate Behavioral Research, 2011
Maxwell, Cole, and Mitchell (2011) demonstrated that simple structural equation models, when used with cross-sectional data, generally produce biased estimates of meditated effects. I extend those results by showing how simple structural equation models can produce biased estimates of meditated effects when used even with longitudinal data. Even…
Descriptors: Structural Equation Models, Statistical Data, Longitudinal Studies, Error of Measurement
Nickerson, Carol – Multivariate Behavioral Research, 2008
Paulhus, Robins, Trzesniewski, and Tracy ("Multivariate Behavioral Research," 2004, 39, 305-328) suggested that the three types of two-predictor suppression situations--classical suppression, cooperative suppression, and net suppression--can all be considered special cases of mutual suppression, in that the magnitude of each of the two…
Descriptors: Predictor Variables, Regression (Statistics), Social Psychology
van Rosmalen, Joost; Koning, Alex J.; Groenen, Patrick J. F. – Multivariate Behavioral Research, 2009
Multiplicative interaction models, such as Goodman's (1981) RC(M) association models, can be a useful tool for analyzing the content of interaction effects. However, most models for interaction effects are suitable only for data sets with two or three predictor variables. Here, we discuss an optimal scaling model for analyzing the content of…
Descriptors: Class Size, Scaling, Predictor Variables, Models