NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Julian F. Lohmann; Steffen Zitzmann; Martin Hecht – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The recently proposed "continuous-time latent curve model with structured residuals" (CT-LCM-SR) addresses several challenges associated with longitudinal data analysis in the behavioral sciences. First, it provides information about process trends and dynamics. Second, using the continuous-time framework, the CT-LCM-SR can handle…
Descriptors: Time Management, Behavioral Science Research, Predictive Validity, Predictor Variables
Yongyun Shin; Stephen W. Raudenbush – Grantee Submission, 2023
We consider two-level models where a continuous response R and continuous covariates C are assumed missing at random. Inferences based on maximum likelihood or Bayes are routinely made by estimating their joint normal distribution from observed data R[subscript obs] and C[subscript obs]. However, if the model for R given C includes random…
Descriptors: Maximum Likelihood Statistics, Hierarchical Linear Modeling, Error of Measurement, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, HyeSun – Applied Measurement in Education, 2018
The current simulation study examined the effects of Item Parameter Drift (IPD) occurring in a short scale on parameter estimates in multilevel models where scores from a scale were employed as a time-varying predictor to account for outcome scores. Five factors, including three decisions about IPD, were considered for simulation conditions. It…
Descriptors: Test Items, Hierarchical Linear Modeling, Predictor Variables, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Schoeneberger, Jason A. – Journal of Experimental Education, 2016
The design of research studies utilizing binary multilevel models must necessarily incorporate knowledge of multiple factors, including estimation method, variance component size, or number of predictors, in addition to sample sizes. This Monte Carlo study examined the performance of random effect binary outcome multilevel models under varying…
Descriptors: Sample Size, Models, Computation, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Aydin, Burak; Leite, Walter L.; Algina, James – Educational and Psychological Measurement, 2016
We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…
Descriptors: Error of Measurement, Predictor Variables, Randomized Controlled Trials, Experimental Groups
Peer reviewed Peer reviewed
Direct linkDirect link
Lai, Mark H. C.; Kwok, Oi-man – Journal of Experimental Education, 2015
Educational researchers commonly use the rule of thumb of "design effect smaller than 2" as the justification of not accounting for the multilevel or clustered structure in their data. The rule, however, has not yet been systematically studied in previous research. In the present study, we generated data from three different models…
Descriptors: Educational Research, Research Design, Cluster Grouping, Statistical Data