NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 2,394 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Issa W. AlHmoud; Samin Poudel; Sulochana Deshmukh; Caroline S. Booth; Greg Monty; Marwan Bikdash – Discover Education, 2024
Using a longitudinal national educational dataset, data science methods were applied to explain students' educational trajectories and determine the most predictive variables in STEM degree attainment. Challenging the notion of the STEM pipeline, an Alternative Pathways to STEM (APS) model was proposed. Using a foundation of Social Cognitive…
Descriptors: STEM Education, Models, Educational Attainment, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Kevin Ng – Education Economics, 2025
This study evaluates techniques to identify high-quality teachers. Since tenure restricts dismissals of experienced teachers, schools must predict productivity and dismiss those expected to perform ineffectively prior to tenure receipt. Many states rely on evaluation scores to guide these personnel decisions without considering other dimensions of…
Descriptors: Identification, Teacher Effectiveness, Teacher Selection, Teacher Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Aarnes Gudmestad; Thomas A. Metzger – Language Learning, 2025
In this Methods Showcase Article, we illustrate mixed-effects modeling with a multinomial dependent variable as a means of explaining complexities in language. We model data on future-time reference in second language Spanish, which consists of a nominal dependent variable that has three levels, measured over 73 participants. We offer step-by-step…
Descriptors: Second Language Learning, Spanish, Applied Linguistics, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Fu Chen; Chang Lu; Ying Cui – Education and Information Technologies, 2024
Successful computer-based assessments for learning greatly rely on an effective learner modeling approach to analyze learner data and evaluate learner behaviors. In addition to explicit learning performance (i.e., product data), the process data logged by computer-based assessments provide a treasure trove of information about how learners solve…
Descriptors: Computer Assisted Testing, Problem Solving, Learning Analytics, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Elouise Botes; Jean-Marc Dewaele; Samuel Greiff; Thomas Goetz – Studies in Second Language Acquisition, 2024
Personality has been identified as a possible antecedent to emotions experienced in the foreign language (FL) classroom. However, contrasting results and differing personality models have resulted in ambiguous findings. This study set out to delve deeper into the role of personality as a predictor of FL emotions through a series of increasingly…
Descriptors: Personality, Prediction, Second Language Learning, Psychological Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
W. Holmes Finch – Educational and Psychological Measurement, 2024
Dominance analysis (DA) is a very useful tool for ordering independent variables in a regression model based on their relative importance in explaining variance in the dependent variable. This approach, which was originally described by Budescu, has recently been extended to use with structural equation models examining relationships among latent…
Descriptors: Models, Regression (Statistics), Structural Equation Models, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Saqr, Mohammed – British Journal of Educational Technology, 2023
Learning analytics is a fast-growing discipline. Institutions and countries alike are racing to harness the power of using data to support students, teachers and stakeholders. Research in the field has proven that predicting and supporting underachieving students is worthwhile. Nonetheless, challenges remain unresolved, for example, lack of…
Descriptors: Learning Analytics, Generalizability Theory, Models, Grades (Scholastic)
Peer reviewed Peer reviewed
Direct linkDirect link
Nazanin Nezami; Parian Haghighat; Denisa Gándara; Hadis Anahideh – Grantee Submission, 2024
The education sector has been quick to recognize the power of predictive analytics to enhance student success rates. However, there are challenges to widespread adoption, including the lack of accessibility and the potential perpetuation of inequalities. These challenges present in different stages of modeling, including data preparation, model…
Descriptors: Evaluation Methods, College Students, Success, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Levis Omusugu Amuya; Peterson Mwai Kariuki – Journal of Higher Education Policy and Management, 2024
Academic institutions today are experiencing a legion of security risks that are increasingly impeding their mission of producing high-quality graduates, guarding reason and educational integrity, and ultimately advancing human civilisation. The Enterprise Security Risk Management (ESRM) model represents a potential solution to the dynamic threats…
Descriptors: Foreign Countries, Universities, Risk Management, Accreditation (Institutions)
Peer reviewed Peer reviewed
Direct linkDirect link
Agus Santoso; Heri Retnawati; Kartianom; Ezi Apino; Ibnu Rafi; Munaya Nikma Rosyada – Open Education Studies, 2024
The world's move to a global economy has an impact on the high rate of student academic failure. Higher education, as the affected party, is considered crucial in reducing student academic failure. This study aims to construct a prediction (predictive model) that can forecast students' time to graduation in developing countries such as Indonesia,…
Descriptors: Time to Degree, Open Universities, Foreign Countries, Predictive Measurement
Emily J. Barnes – ProQuest LLC, 2024
This quantitative study investigates the predictive power of machine learning (ML) models on degree completion among adult learners in higher education, emphasizing the enhancement of data-driven decision-making (DDDM). By analyzing three ML models - Random Forest, Gradient-Boosting machine (GBM), and CART Decision Tree - within a not-for-profit,…
Descriptors: Artificial Intelligence, Higher Education, Models, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Yoneoka, Daisuke; Omae, Katsuhiro; Henmi, Masayuki; Eguchi, Shinto – Research Synthesis Methods, 2023
The number of clinical prediction models sharing the same prediction task has increased in the medical literature. However, evidence synthesis methodologies that use the results of these prediction models have not been sufficiently studied, particularly in the context of meta-analysis settings where only summary statistics are available. In…
Descriptors: Prediction, Task Analysis, Medical Research, Outcomes of Treatment
Peer reviewed Peer reviewed
Direct linkDirect link
Jacquelynne S. Eccles; Allan Wigfield – Educational Psychology Review, 2024
To address the seven guiding questions posed for authors of articles in this special issue, we begin by discussing the development (in the late 1970s-early 1980s) of Eccles' expectancy-value theory of achievement choice (EEVT), a theory developed to explain the cultural phenomenon of why girls were less likely to participate in STEM courses and…
Descriptors: Educational Theories, Academic Achievement, Females, Student Participation
Peer reviewed Peer reviewed
Direct linkDirect link
Viechtbauer, Wolfgang; López-López, José Antonio – Research Synthesis Methods, 2022
Heterogeneity is commonplace in meta-analysis. When heterogeneity is found, researchers often aim to identify predictors that account for at least part of such heterogeneity by using mixed-effects meta-regression models. Another potentially relevant goal is to focus on the amount of heterogeneity as a function of one or more predictors, but this…
Descriptors: Meta Analysis, Models, Predictor Variables, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Deeva, Galina; De Smedt, Johannes; De Weerdt, Jochen – IEEE Transactions on Learning Technologies, 2022
Due to the unprecedented growth in available data collected by e-learning platforms, including platforms used by massive open online course (MOOC) providers, important opportunities arise to structurally use these data for decision making and improvement of the educational offering. Student retention is a strategic task that can be supported by…
Descriptors: Electronic Learning, MOOCs, Dropouts, Prediction
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  160