Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 1 |
Since 2006 (last 20 years) | 2 |
Descriptor
Source
Grantee Submission | 2 |
Author
Gelman, Andrew | 2 |
Goodrich, Ben | 2 |
Betancourt, Michael | 1 |
Brubaker, Marcus A. | 1 |
Carpenter, Bob | 1 |
Guo, Jiqiang | 1 |
Hill, Jennifer | 1 |
Hoffman, Matthew D. | 1 |
Kropko, Jonathan | 1 |
Lee, Daniel | 1 |
Li, Peter | 1 |
More ▼ |
Publication Type
Journal Articles | 1 |
Reports - Descriptive | 1 |
Reports - Research | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; Lee, Daniel; Goodrich, Ben; Betancourt, Michael; Brubaker, Marcus A.; Guo, Jiqiang; Li, Peter; Riddell, Allen – Grantee Submission, 2017
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the…
Descriptors: Programming Languages, Probability, Bayesian Statistics, Monte Carlo Methods
Kropko, Jonathan; Goodrich, Ben; Gelman, Andrew; Hill, Jennifer – Grantee Submission, 2014
We consider the relative performance of two common approaches to multiple imputation (MI): joint multivariate normal (MVN) MI, in which the data are modeled as a sample from a joint MVN distribution; and conditional MI, in which each variable is modeled conditionally on all the others. In order to use the multivariate normal distribution,…
Descriptors: Statistical Analysis, Multivariate Analysis, Accuracy, Data