NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Philip Dawid; Macartan Humphreys; Monica Musio – Sociological Methods & Research, 2024
Suppose "X" and "Y" are binary exposure and outcome variables, and we have full knowledge of the distribution of "Y," given application of "X." We are interested in assessing whether an outcome in some case is due to the exposure. This "probability of causation" is of interest in comparative…
Descriptors: Causal Models, Intervals, Probability, Qualitative Research
Peer reviewed Peer reviewed
Direct linkDirect link
Gabriele Morganti; Alexandra Lascu; Gennaro Apollaro; Laura Pantanella; Mario Esposito; Alberto Grossi; Bruno Ruscello – Sport, Education and Society, 2024
Talent identification and development systems (TIDS) adopt a deterministic perspective (i.e. athletes' future state/performances can be predicted by observations of their initial state/performance), which encourages early identification and specialisation in sport. In this framework, the main aim of sport systems is to enhance predictability and…
Descriptors: Talent Identification, Talent Development, Athletics, Athletes
Peer reviewed Peer reviewed
Direct linkDirect link
Marek Arendarczyk; Tomasz J. Kozubowski; Anna K. Panorska – Journal of Statistics and Data Science Education, 2023
We provide tools for identification and exploration of data with very large variability having power law tails. Such data describe extreme features of processes such as fire losses, flood, drought, financial gain/loss, hurricanes, population of cities, among others. Prediction and quantification of extreme events are at the forefront of the…
Descriptors: Natural Disasters, Probability, Regression (Statistics), Statistical Analysis
Guo, Shenyang; Fraser, Mark W. – SAGE Publications Ltd (CA), 2014
Fully updated to reflect the most recent changes in the field, the Second Edition of "Propensity Score Analysis" provides an accessible, systematic review of the origins, history, and statistical foundations of propensity score analysis, illustrating how it can be used for solving evaluation and causal-inference problems. With a strong…
Descriptors: Probability, Scores, Statistical Analysis, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Pearl, Judea – Cognitive Science, 2013
Recent advances in causal reasoning have given rise to a computational model that emulates the process by which humans generate, evaluate, and distinguish counterfactual sentences. Contrasted with the "possible worlds" account of counterfactuals, this "structural" model enjoys the advantages of representational economy,…
Descriptors: Causal Models, Cognitive Science, Sentences, Inferences
Peer reviewed Peer reviewed
Direct linkDirect link
Huey, Maryann E.; Baker, Deidra L. – Mathematics Teacher, 2015
Many teachers of required secondary school mathematics classes are introducing statistics and probability topics traditionally relegated to college or AP Statistics courses. As a result, they need guidance in preparing lesson plans and orchestrating effective classroom discussions. In this article, the authors will describe the students' learning…
Descriptors: Misconceptions, Causal Models, Secondary School Mathematics, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Gopnik, Alison; Wellman, Henry M. – Psychological Bulletin, 2012
We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework…
Descriptors: Causal Models, Theory of Mind, Probability, Cognitive Development
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan, Ying; MacKinnon, David P. – Psychological Methods, 2009
In this article, we propose Bayesian analysis of mediation effects. Compared with conventional frequentist mediation analysis, the Bayesian approach has several advantages. First, it allows researchers to incorporate prior information into the mediation analysis, thus potentially improving the efficiency of estimates. Second, under the Bayesian…
Descriptors: Bayesian Statistics, Probability, Correlation, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Coffman, Donna L. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Mediation is usually assessed by a regression-based or structural equation modeling (SEM) approach that we refer to as the classical approach. This approach relies on the assumption that there are no confounders that influence both the mediator, "M", and the outcome, "Y". This assumption holds if individuals are randomly…
Descriptors: Structural Equation Models, Simulation, Regression (Statistics), Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Carilli, Anthony M.; Dempster, Gregory M. – Journal of Education for Business, 2003
The treatment of uncertainty in the business classroom has been dominated by the application of risk theory to the utility-maximization framework. Nonetheless, the relevance of the standard risk model as a positive description of economic decision making often has been called into question in theoretical work. In this article, the authors offer an…
Descriptors: Undergraduate Students, Probability, Economics, Decision Making