Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 10 |
Descriptor
Bayesian Statistics | 12 |
Probability | 12 |
Item Response Theory | 4 |
Statistical Analysis | 4 |
Factor Analysis | 3 |
Hypothesis Testing | 3 |
Item Analysis | 3 |
Models | 3 |
Sample Size | 3 |
Scores | 3 |
Statistical Inference | 3 |
More ▼ |
Source
Educational and Psychological… | 12 |
Author
Jones, W. Paul | 2 |
Marsman, Maarten | 2 |
Wagenmakers, Eric-Jan | 2 |
Beretvas, S. Natasha | 1 |
Dardick, William R. | 1 |
Glas, Cees A. W. | 1 |
Gonzalez, Oscar | 1 |
Green, Samuel B. | 1 |
Jamil, Tahira | 1 |
Jiao, Hong | 1 |
Lee, HwaYoung | 1 |
More ▼ |
Publication Type
Journal Articles | 11 |
Reports - Research | 11 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Gonzalez, Oscar – Educational and Psychological Measurement, 2023
When scores are used to make decisions about respondents, it is of interest to estimate classification accuracy (CA), the probability of making a correct decision, and classification consistency (CC), the probability of making the same decision across two parallel administrations of the measure. Model-based estimates of CA and CC computed from the…
Descriptors: Classification, Accuracy, Intervals, Probability
Levy, Roy; Xia, Yan; Green, Samuel B. – Educational and Psychological Measurement, 2021
A number of psychometricians have suggested that parallel analysis (PA) tends to yield more accurate results in determining the number of factors in comparison with other statistical methods. Nevertheless, all too often PA can suggest an incorrect number of factors, particularly in statistically unfavorable conditions (e.g., small sample sizes and…
Descriptors: Bayesian Statistics, Statistical Analysis, Factor Structure, Probability
Marsman, Maarten; Wagenmakers, Eric-Jan – Educational and Psychological Measurement, 2017
P values have been critiqued on several grounds but remain entrenched as the dominant inferential method in the empirical sciences. In this article, we elaborate on the fact that in many statistical models, the one-sided "P" value has a direct Bayesian interpretation as the approximate posterior mass for values lower than zero. The…
Descriptors: Bayesian Statistics, Statistical Inference, Probability, Statistical Analysis
Trafimow, David – Educational and Psychological Measurement, 2017
There has been much controversy over the null hypothesis significance testing procedure, with much of the criticism centered on the problem of inverse inference. Specifically, p gives the probability of the finding (or one more extreme) given the null hypothesis, whereas the null hypothesis significance testing procedure involves drawing a…
Descriptors: Statistical Inference, Hypothesis Testing, Probability, Intervals
Luo, Yong; Jiao, Hong – Educational and Psychological Measurement, 2018
Stan is a new Bayesian statistical software program that implements the powerful and efficient Hamiltonian Monte Carlo (HMC) algorithm. To date there is not a source that systematically provides Stan code for various item response theory (IRT) models. This article provides Stan code for three representative IRT models, including the…
Descriptors: Bayesian Statistics, Item Response Theory, Probability, Computer Software
Jamil, Tahira; Marsman, Maarten; Ly, Alexander; Morey, Richard D.; Wagenmakers, Eric-Jan – Educational and Psychological Measurement, 2017
In 1881, Donald MacAlister posed a problem in the "Educational Times" that remains relevant today. The problem centers on the statistical evidence for the effectiveness of a treatment based on a comparison between two proportions. A brief historical sketch is followed by a discussion of two default Bayesian solutions, one based on a…
Descriptors: Bayesian Statistics, Evidence, Comparative Analysis, Problem Solving
Dardick, William R.; Mislevy, Robert J. – Educational and Psychological Measurement, 2016
A new variant of the iterative "data = fit + residual" data-analytical approach described by Mosteller and Tukey is proposed and implemented in the context of item response theory psychometric models. Posterior probabilities from a Bayesian mixture model of a Rasch item response theory model and an unscalable latent class are expressed…
Descriptors: Bayesian Statistics, Probability, Data Analysis, Item Response Theory
Jones, W. Paul – Educational and Psychological Measurement, 2014
A study in a university clinic/laboratory investigated adaptive Bayesian scaling as a supplement to interpretation of scores on the Mini-IPIP. A "probability of belonging" in categories of low, medium, or high on each of the Big Five traits was calculated after each item response and continued until all items had been used or until a…
Descriptors: Personality Traits, Personality Measures, Bayesian Statistics, Clinics
Lee, HwaYoung; Beretvas, S. Natasha – Educational and Psychological Measurement, 2014
Conventional differential item functioning (DIF) detection methods (e.g., the Mantel-Haenszel test) can be used to detect DIF only across observed groups, such as gender or ethnicity. However, research has found that DIF is not typically fully explained by an observed variable. True sources of DIF may include unobserved, latent variables, such as…
Descriptors: Item Analysis, Factor Structure, Bayesian Statistics, Goodness of Fit
Glas, Cees A. W.; Pimentel, Jonald L. – Educational and Psychological Measurement, 2008
In tests with time limits, items at the end are often not reached. Usually, the pattern of missing responses depends on the ability level of the respondents; therefore, missing data are not ignorable in statistical inference. This study models data using a combination of two item response theory (IRT) models: one for the observed response data and…
Descriptors: Intelligence Tests, Statistical Inference, Item Response Theory, Modeling (Psychology)

Jones, W. Paul; Newman, F. L. – Educational and Psychological Measurement, 1971
Descriptors: Bayesian Statistics, Decision Making, Hypothesis Testing, Performance Criteria

Smith, Jeffrey K. – Educational and Psychological Measurement, 1980
Weber contends that the use of Rasch analysis, principal components analysis, and classical test analysis shows that an instrument designed to measure a "bilevel dimensionality" in probability achievement measures a single latent trait. That interpretation and the use of Rasch and classical analysis to establish unidimensionality are…
Descriptors: Academic Achievement, Bayesian Statistics, Cognitive Processes, Item Analysis