Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 0 |
| Since 2007 (last 20 years) | 2 |
Descriptor
| Causal Models | 2 |
| Probability | 2 |
| Sample Size | 2 |
| Structural Equation Models | 2 |
| Comparative Analysis | 1 |
| Intervals | 1 |
| Intervention | 1 |
| Models | 1 |
| Monte Carlo Methods | 1 |
| Predictor Variables | 1 |
| Regression (Statistics) | 1 |
| More ▼ | |
Source
| Structural Equation Modeling:… | 2 |
Publication Type
| Journal Articles | 2 |
| Reports - Descriptive | 1 |
| Reports - Evaluative | 1 |
Education Level
Audience
| Researchers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Coffman, Donna L. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Mediation is usually assessed by a regression-based or structural equation modeling (SEM) approach that we refer to as the classical approach. This approach relies on the assumption that there are no confounders that influence both the mediator, "M", and the outcome, "Y". This assumption holds if individuals are randomly…
Descriptors: Structural Equation Models, Simulation, Regression (Statistics), Probability
Cheung, Mike W. L. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
Mediators are variables that explain the association between an independent variable and a dependent variable. Structural equation modeling (SEM) is widely used to test models with mediating effects. This article illustrates how to construct confidence intervals (CIs) of the mediating effects for a variety of models in SEM. Specifically, mediating…
Descriptors: Structural Equation Models, Probability, Intervals, Sample Size

Peer reviewed
Direct link
