Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 14 |
Descriptor
Bayesian Statistics | 21 |
Probability | 21 |
Statistical Distributions | 21 |
Statistical Analysis | 7 |
Computation | 6 |
Simulation | 6 |
Data Analysis | 4 |
Equations (Mathematics) | 4 |
Error of Measurement | 4 |
Estimation (Mathematics) | 4 |
Mathematical Models | 4 |
More ▼ |
Source
Author
Andrew Gelman | 1 |
Baker, Frank B. | 1 |
Betancourt, Michael | 1 |
Brubaker, Marcus A. | 1 |
Bryk, Anthony S. | 1 |
Camilli, Gregory | 1 |
Carpenter, Bob | 1 |
Cartledge, Carolyn M. | 1 |
Cumming, Geoff | 1 |
Daniel Lee | 1 |
David Kaplan | 1 |
More ▼ |
Publication Type
Journal Articles | 13 |
Reports - Research | 9 |
Reports - Descriptive | 5 |
Reports - Evaluative | 4 |
Speeches/Meeting Papers | 2 |
Dissertations/Theses -… | 1 |
Guides - Non-Classroom | 1 |
Opinion Papers | 1 |
Education Level
Higher Education | 4 |
Postsecondary Education | 4 |
Audience
Practitioners | 1 |
Researchers | 1 |
Teachers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 1 |
Teaching and Learning… | 1 |
Wechsler Intelligence Scale… | 1 |
What Works Clearinghouse Rating
David Kaplan; Kjorte Harra – OECD Publishing, 2023
This report aims to showcase the value of implementing a Bayesian framework to analyse and report results from international large-scale surveys and provide guidance to users who want to analyse the data using this approach. The motivation for this report stems from the recognition that Bayesian statistical inference is fast becoming a popular…
Descriptors: Bayesian Statistics, Statistical Inference, Data Analysis, Educational Research
Deke, John; Finucane, Mariel; Thal, Daniel – National Center for Education Evaluation and Regional Assistance, 2022
BASIE is a framework for interpreting impact estimates from evaluations. It is an alternative to null hypothesis significance testing. This guide walks researchers through the key steps of applying BASIE, including selecting prior evidence, reporting impact estimates, interpreting impact estimates, and conducting sensitivity analyses. The guide…
Descriptors: Bayesian Statistics, Educational Research, Data Interpretation, Hypothesis Testing
Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; Lee, Daniel; Goodrich, Ben; Betancourt, Michael; Brubaker, Marcus A.; Guo, Jiqiang; Li, Peter; Riddell, Allen – Grantee Submission, 2017
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the…
Descriptors: Programming Languages, Probability, Bayesian Statistics, Monte Carlo Methods
Liu, Haiyan; Zhang, Zhiyong; Grimm, Kevin J. – Grantee Submission, 2016
Growth curve modeling provides a general framework for analyzing longitudinal data from social, behavioral, and educational sciences. Bayesian methods have been used to estimate growth curve models, in which priors need to be specified for unknown parameters. For the covariance parameter matrix, the inverse Wishart prior is most commonly used due…
Descriptors: Bayesian Statistics, Computation, Statistical Analysis, Growth Models
Miratrix, Luke; Feller, Avi; Pillai, Natesh; Pati, Debdeep – Society for Research on Educational Effectiveness, 2016
Modeling the distribution of site level effects is an important problem, but it is also an incredibly difficult one. Current methods rely on distributional assumptions in multilevel models for estimation. There it is hoped that the partial pooling of site level estimates with overall estimates, designed to take into account individual variation as…
Descriptors: Probability, Models, Statistical Distributions, Bayesian Statistics
Andrew Gelman; Daniel Lee; Jiqiang Guo – Journal of Educational and Behavioral Statistics, 2015
Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users' and developers'…
Descriptors: Programming Languages, Bayesian Statistics, Inferences, Monte Carlo Methods
Wulff, Shaun S.; Robinson, Timothy J. – Journal of Statistics Education, 2014
Bayesian methodology continues to be widely used in statistical applications. As a result, it is increasingly important to introduce students to Bayesian thinking at early stages in their mathematics and statistics education. While many students in upper level probability courses can recite the differences in the Frequentist and Bayesian…
Descriptors: Bayesian Statistics, Probability, College Mathematics, Mathematics Instruction
Sinharay, Sandip – Journal of Educational and Behavioral Statistics, 2015
Person-fit assessment may help the researcher to obtain additional information regarding the answering behavior of persons. Although several researchers examined person fit, there is a lack of research on person-fit assessment for mixed-format tests. In this article, the lz statistic and the ?2 statistic, both of which have been used for tests…
Descriptors: Test Format, Goodness of Fit, Item Response Theory, Bayesian Statistics
Leemis, Lawrence M.; Luckett, Daniel J.; Powell, Austin G.; Vermeer, Peter E. – Journal of Statistics Education, 2012
We describe a web-based interactive graphic that can be used as a resource in introductory classes in mathematical statistics. This interactive graphic presents 76 common univariate distributions and gives details on (a) various features of the distribution such as the functional form of the probability density function and cumulative distribution…
Descriptors: Probability, Statistical Distributions, Transformations (Mathematics), Bayesian Statistics
Sarkar, Saurabh – ProQuest LLC, 2013
In the modern world information has become the new power. An increasing amount of efforts are being made to gather data, resources being allocated, time being invested and tools being developed. Data collection is no longer a myth; however, it remains a great challenge to create value out of the enormous data that is being collected. Data modeling…
Descriptors: Data Analysis, Data Collection, Error of Measurement, Research Problems
Williams, Joseph J.; Griffiths, Thomas L. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2013
Errors in detecting randomness are often explained in terms of biases and misconceptions. We propose and provide evidence for an account that characterizes the contribution of the inherent statistical difficulty of the task. Our account is based on a Bayesian statistical analysis, focusing on the fact that a random process is a special case of…
Descriptors: Experimental Psychology, Bias, Misconceptions, Statistical Analysis
Verkuilen, Jay; Smithson, Michael – Journal of Educational and Behavioral Statistics, 2012
Doubly bounded continuous data are common in the social and behavioral sciences. Examples include judged probabilities, confidence ratings, derived proportions such as percent time on task, and bounded scale scores. Dependent variables of this kind are often difficult to analyze using normal theory models because their distributions may be quite…
Descriptors: Responses, Regression (Statistics), Statistical Analysis, Models
Turocy, Theodore L. – Journal of Economic Education, 2009
The author describes a protocol for classroom experiments for courses that introduce undergraduates to signaling games. Signaling games are conceptually difficult because, when analyzing the game, students are not naturally inclined to think in probabilistic, Bayesian terms. The experimental design explicitly presents the posterior frequencies of…
Descriptors: Class Activities, Experiments, Games, Undergraduate Study
Cumming, Geoff – Psychological Methods, 2010
This comment offers three descriptions of "p[subscript rep]" that start with a frequentist account of confidence intervals, draw on R. A. Fisher's fiducial argument, and do not make Bayesian assumptions. Links are described among "p[subscript rep]," "p" values, and the probability a confidence interval will capture…
Descriptors: Replication (Evaluation), Measurement Techniques, Research Methodology, Validity

Camilli, Gregory – Psychometrika, 1995
This paper demonstrates that two major tests for two-by-two tables, Fisher's exact and Pearson's chi-square tests, are highly related from a Bayesian perspective. A formal similarity is demonstrated in small samples, and reasons for the relationship are discussed. (SLD)
Descriptors: Bayesian Statistics, Chi Square, Equations (Mathematics), Probability
Previous Page | Next Page ยป
Pages: 1 | 2