Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 8 |
Since 2016 (last 10 years) | 14 |
Since 2006 (last 20 years) | 31 |
Descriptor
Bayesian Statistics | 41 |
Classification | 41 |
Probability | 41 |
Models | 13 |
Accuracy | 7 |
Mathematical Models | 7 |
Statistical Analysis | 7 |
Decision Making | 6 |
Inferences | 6 |
Prediction | 6 |
Comparative Analysis | 5 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 30 |
Reports - Research | 24 |
Reports - Evaluative | 6 |
Dissertations/Theses -… | 4 |
Reports - Descriptive | 4 |
Speeches/Meeting Papers | 3 |
Opinion Papers | 1 |
Education Level
Higher Education | 6 |
Postsecondary Education | 5 |
Elementary Secondary Education | 1 |
Secondary Education | 1 |
Audience
Researchers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Trends in International… | 1 |
What Works Clearinghouse Rating
Gonzalez, Oscar – Educational and Psychological Measurement, 2023
When scores are used to make decisions about respondents, it is of interest to estimate classification accuracy (CA), the probability of making a correct decision, and classification consistency (CC), the probability of making the same decision across two parallel administrations of the measure. Model-based estimates of CA and CC computed from the…
Descriptors: Classification, Accuracy, Intervals, Probability
Marchant, Nicolás; Quillien, Tadeg; Chaigneau, Sergio E. – Cognitive Science, 2023
The causal view of categories assumes that categories are represented by features and their causal relations. To study the effect of causal knowledge on categorization, researchers have used Bayesian causal models. Within that framework, categorization may be viewed as dependent on a likelihood computation (i.e., the likelihood of an exemplar with…
Descriptors: Classification, Bayesian Statistics, Causal Models, Evaluation Methods
Zheng, Rong; Busemeyer, Jerome R.; Nosofsky, Robert M. – Cognitive Science, 2023
Though individual categorization or decision processes have been studied separately in many previous investigations, few studies have investigated how they interact by using a two-stage task of first categorizing and then deciding. To address this issue, we investigated a categorization-decision task in two experiments. In both, participants were…
Descriptors: Classification, Decision Making, Task Analysis, Feedback (Response)
W. Jake Thompson – Grantee Submission, 2023
In educational and psychological research, we are often interested in discrete latent states of individuals responding to an assessment (e.g., proficiency or non-proficiency on educational standards, the presence or absence of a psychological disorder). Diagnostic classification models (DCMs; also called cognitive diagnostic models [CDMs]) are a…
Descriptors: Bayesian Statistics, Measurement, Psychometrics, Educational Research
Lijin Zhang; Xueyang Li; Zhiyong Zhang – Grantee Submission, 2023
The thriving developer community has a significant impact on the widespread use of R software. To better understand this community, we conducted a study analyzing all R packages available on CRAN. We identified the most popular topics of R packages by text mining the package descriptions. Additionally, using network centrality measures, we…
Descriptors: Computer Software, Programming Languages, Data Analysis, Visual Aids
Ava Greenwood; Sara Davies; Timothy J. McIntyre – Australian Mathematics Education Journal, 2023
This article is motivated by the importance of developing statistically literate students. The authors present a selection of problems that could be used to motivate student interest in probability as well as providing additional depth to the curriculum when used alongside traditional resources. The solutions presented utilise natural frequencies…
Descriptors: Probability, Mathematics Instruction, Teaching Methods, Statistics Education
Xing, Wanli; Pei, Bo; Li, Shan; Chen, Guanhua; Xie, Charles – Interactive Learning Environments, 2023
Engineering design plays an important role in education. However, due to its open nature and complexity, providing timely support to students has been challenging using the traditional assessment methods. This study takes an initial step to employ learning analytics to build performance prediction models to help struggling students. It allows…
Descriptors: Learning Analytics, Engineering Education, Prediction, Design
Lyu, Weicong; Kim, Jee-Seon; Suk, Youmi – Journal of Educational and Behavioral Statistics, 2023
This article presents a latent class model for multilevel data to identify latent subgroups and estimate heterogeneous treatment effects. Unlike sequential approaches that partition data first and then estimate average treatment effects (ATEs) within classes, we employ a Bayesian procedure to jointly estimate mixing probability, selection, and…
Descriptors: Hierarchical Linear Modeling, Bayesian Statistics, Causal Models, Statistical Inference
Tingir, Seyfullah – ProQuest LLC, 2019
Educators use various statistical techniques to explain relationships between latent and observable variables. One way to model these relationships is to use Bayesian networks as a scoring model. However, adjusting the conditional probability tables (CPT-parameters) to fit a set of observations is still a challenge when using Bayesian networks. A…
Descriptors: Bayesian Statistics, Statistical Analysis, Scoring, Probability
Longford, Nicholas Tibor – Journal of Educational and Behavioral Statistics, 2016
We address the problem of selecting the best of a set of units based on a criterion variable, when its value is recorded for every unit subject to estimation, measurement, or another source of error. The solution is constructed in a decision-theoretical framework, incorporating the consequences (ramifications) of the various kinds of error that…
Descriptors: Decision Making, Classification, Guidelines, Undergraduate Students
Ashby, F. Gregory; Vucovich, Lauren E. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2016
Feedback is highly contingent on behavior if it eventually becomes easy to predict, and weakly contingent on behavior if it remains difficult or impossible to predict even after learning is complete. Many studies have demonstrated that humans and nonhuman animals are highly sensitive to feedback contingency, but no known studies have examined how…
Descriptors: Feedback (Response), Classification, Learning Processes, Associative Learning
Oh, Hanna; Beck, Jeffrey M.; Zhu, Pingping; Sommer, Marc A.; Ferrari, Silvia; Egner, Tobias – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2016
Much of our real-life decision making is bounded by uncertain information, limitations in cognitive resources, and a lack of time to allocate to the decision process. It is thought that humans overcome these limitations through "satisficing," fast but "good-enough" heuristic decision making that prioritizes some sources of…
Descriptors: Decision Making, Cues, Cognitive Processes, Time
Wu, Charley M.; Meder, Björn; Filimon, Flavia; Nelson, Jonathan D. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2017
While the influence of presentation formats have been widely studied in Bayesian reasoning tasks, we present the first systematic investigation of how presentation formats influence information search decisions. Four experiments were conducted across different probabilistic environments, where subjects (N = 2,858) chose between 2 possible search…
Descriptors: Questioning Techniques, Information Seeking, Search Strategies, Search Engines
Jones, W. Paul – Educational and Psychological Measurement, 2014
A study in a university clinic/laboratory investigated adaptive Bayesian scaling as a supplement to interpretation of scores on the Mini-IPIP. A "probability of belonging" in categories of low, medium, or high on each of the Big Five traits was calculated after each item response and continued until all items had been used or until a…
Descriptors: Personality Traits, Personality Measures, Bayesian Statistics, Clinics
Vanpaemel, Wolf; Lee, Michael D. – Psychological Bulletin, 2012
Wills and Pothos (2012) reviewed approaches to evaluating formal models of categorization, raising a series of worthwhile issues, challenges, and goals. Unfortunately, in discussing these issues and proposing solutions, Wills and Pothos (2012) did not consider Bayesian methods in any detail. This means not only that their review excludes a major…
Descriptors: Classification, Program Evaluation, Bayesian Statistics, Models