Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 2 |
Descriptor
Bayesian Statistics | 2 |
Causal Models | 2 |
Cognitive Development | 2 |
Probability | 2 |
Constructivism (Learning) | 1 |
Experience | 1 |
Inferences | 1 |
Intervention | 1 |
Language Usage | 1 |
Learning | 1 |
Logical Thinking | 1 |
More ▼ |
Publication Type
Journal Articles | 2 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Gopnik, Alison; Wellman, Henry M. – Psychological Bulletin, 2012
We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework…
Descriptors: Causal Models, Theory of Mind, Probability, Cognitive Development
Goodman, Noah D.; Ullman, Tomer D.; Tenenbaum, Joshua B. – Psychological Review, 2011
The very early appearance of abstract knowledge is often taken as evidence for innateness. We explore the relative learning speeds of abstract and specific knowledge within a Bayesian framework and the role for innate structure. We focus on knowledge about causality, seen as a domain-general intuitive theory, and ask whether this knowledge can be…
Descriptors: Causal Models, Logical Thinking, Cognitive Development, Bayesian Statistics