Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 9 |
Descriptor
Bayesian Statistics | 10 |
Factor Analysis | 10 |
Probability | 10 |
Models | 5 |
Data Analysis | 4 |
Regression (Statistics) | 4 |
Statistical Analysis | 4 |
Accuracy | 2 |
Classification | 2 |
Correlation | 2 |
Difficulty Level | 2 |
More ▼ |
Source
Educational and Psychological… | 3 |
International Educational… | 1 |
International Journal of… | 1 |
Journal of Educational Data… | 1 |
Measurement:… | 1 |
ProQuest LLC | 1 |
Roeper Review | 1 |
Author
Publication Type
Reports - Research | 8 |
Journal Articles | 7 |
Speeches/Meeting Papers | 2 |
Dissertations/Theses -… | 1 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 2 |
Postsecondary Education | 2 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Gonzalez, Oscar – Educational and Psychological Measurement, 2023
When scores are used to make decisions about respondents, it is of interest to estimate classification accuracy (CA), the probability of making a correct decision, and classification consistency (CC), the probability of making the same decision across two parallel administrations of the measure. Model-based estimates of CA and CC computed from the…
Descriptors: Classification, Accuracy, Intervals, Probability
Raykov, Tenko; Doebler, Philipp; Marcoulides, George A. – Measurement: Interdisciplinary Research and Perspectives, 2022
This article is concerned with the large-sample parameter estimator behavior in applications of Bayesian confirmatory factor analysis in behavioral measurement. The property of strong convergence of the popular Bayesian posterior median estimator is discussed, which states numerical convergence with probability 1 of the resulting estimates to the…
Descriptors: Bayesian Statistics, Measurement Techniques, Correlation, Factor Analysis
Levy, Roy; Xia, Yan; Green, Samuel B. – Educational and Psychological Measurement, 2021
A number of psychometricians have suggested that parallel analysis (PA) tends to yield more accurate results in determining the number of factors in comparison with other statistical methods. Nevertheless, all too often PA can suggest an incorrect number of factors, particularly in statistically unfavorable conditions (e.g., small sample sizes and…
Descriptors: Bayesian Statistics, Statistical Analysis, Factor Structure, Probability
Enakshi Saha – ProQuest LLC, 2021
We study flexible Bayesian methods that are amenable to a wide range of learning problems involving complex high dimensional data structures, with minimal tuning. We consider parametric and semiparametric Bayesian models, that are applicable to both static and dynamic data, arising from a multitude of areas such as economics, finance and…
Descriptors: Bayesian Statistics, Probability, Nonparametric Statistics, Data Analysis
Dardick, William R.; Mislevy, Robert J. – Educational and Psychological Measurement, 2016
A new variant of the iterative "data = fit + residual" data-analytical approach described by Mosteller and Tukey is proposed and implemented in the context of item response theory psychometric models. Posterior probabilities from a Bayesian mixture model of a Rasch item response theory model and an unscalable latent class are expressed…
Descriptors: Bayesian Statistics, Probability, Data Analysis, Item Response Theory
MacLellan, Christopher J.; Liu, Ran; Koedinger, Kenneth R. – International Educational Data Mining Society, 2015
Additive Factors Model (AFM) and Performance Factors Analysis (PFA) are two popular models of student learning that employ logistic regression to estimate parameters and predict performance. This is in contrast to Bayesian Knowledge Tracing (BKT) which uses a Hidden Markov Model formalism. While all three models tend to make similar predictions,…
Descriptors: Factor Analysis, Regression (Statistics), Knowledge Level, Markov Processes
Mammadov, Sakhavat; Ward, Thomas J.; Cross, Jennifer Riedl; Cross, Tracy L. – Roeper Review, 2016
To date, in gifted education and related fields various conventional factor analytic and clustering techniques have been used extensively for investigation of the underlying structure of data. Latent profile analysis is a relatively new method in the field. In this article, we provide an introduction to latent profile analysis for gifted education…
Descriptors: Statistical Analysis, Academically Gifted, Factor Analysis, Multivariate Analysis
Waters, Andrew; Studer, Christoph; Baraniuk, Richard – Journal of Educational Data Mining, 2014
Identifying collaboration between learners in a course is an important challenge in education for two reasons: First, depending on the courses rules, collaboration can be considered a form of cheating. Second, it helps one to more accurately evaluate each learners competence. While such collaboration identification is already challenging in…
Descriptors: Cooperation, Large Group Instruction, Online Courses, Probability
Valdés Aguirre, Benjamín; Ramírez Uresti, Jorge A.; du Boulay, Benedict – International Journal of Artificial Intelligence in Education, 2016
Sharing user information between systems is an area of interest for every field involving personalization. Recommender Systems are more advanced in this aspect than Intelligent Tutoring Systems (ITSs) and Intelligent Learning Environments (ILEs). A reason for this is that the user models of Intelligent Tutoring Systems and Intelligent Learning…
Descriptors: Intelligent Tutoring Systems, Models, Open Source Technology, Computers
Abdel-fattah, Abdel-fattah A. – 1992
A scaling procedure is proposed, based on item response theory (IRT), to fit non-hierarchical test structure as well. The binary scores of a test of English were used for calculating the probabilities of answering each item correctly. The probability matrix was factor analyzed, and the difficulty intervals or estimates corresponding to the factors…
Descriptors: Bayesian Statistics, Difficulty Level, English, Estimation (Mathematics)