Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 10 |
Descriptor
Item Response Theory | 10 |
Probability | 10 |
Statistical Inference | 10 |
Bayesian Statistics | 4 |
Computation | 4 |
Error of Measurement | 3 |
Monte Carlo Methods | 3 |
Scores | 3 |
Statistical Analysis | 3 |
Ability | 2 |
Comparative Analysis | 2 |
More ▼ |
Source
Educational and Psychological… | 3 |
Applied Psychological… | 1 |
Educational Measurement:… | 1 |
Grantee Submission | 1 |
International Journal of… | 1 |
Journal of Intelligence | 1 |
Mathematical Thinking and… | 1 |
Psychometrika | 1 |
Author
Publication Type
Journal Articles | 10 |
Reports - Research | 8 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Grade 9 | 1 |
High Schools | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Researchers | 1 |
Students | 1 |
Location
Germany | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Yuqi Gu; Elena A. Erosheva; Gongjun Xu; David B. Dunson – Grantee Submission, 2023
Mixed Membership Models (MMMs) are a popular family of latent structure models for complex multivariate data. Instead of forcing each subject to belong to a single cluster, MMMs incorporate a vector of subject-specific weights characterizing partial membership across clusters. With this flexibility come challenges in uniquely identifying,…
Descriptors: Multivariate Analysis, Item Response Theory, Bayesian Statistics, Models
Levy, Roy – Educational Measurement: Issues and Practice, 2020
In this digital ITEMS module, Dr. Roy Levy describes Bayesian approaches to psychometric modeling. He discusses how Bayesian inference is a mechanism for reasoning in a probability-modeling framework and is well-suited to core problems in educational measurement: reasoning from student performances on an assessment to make inferences about their…
Descriptors: Bayesian Statistics, Psychometrics, Item Response Theory, Statistical Inference
Hofman, Abe D.; Brinkhuis, Matthieu J. S.; Bolsinova, Maria; Klaiber, Jonathan; Maris, Gunter; van der Maas, Han L. J. – Journal of Intelligence, 2020
One of the highest ambitions in educational technology is the move towards personalized learning. To this end, computerized adaptive learning (CAL) systems are developed. A popular method to track the development of student ability and item difficulty, in CAL systems, is the Elo Rating System (ERS). The ERS allows for dynamic model parameters by…
Descriptors: Teaching Methods, Computer Assisted Instruction, Difficulty Level, Individualized Instruction
Maeda, Hotaka; Zhang, Bo – International Journal of Testing, 2017
The omega (?) statistic is reputed to be one of the best indices for detecting answer copying on multiple choice tests, but its performance relies on the accurate estimation of copier ability, which is challenging because responses from the copiers may have been contaminated. We propose an algorithm that aims to identify and delete the suspected…
Descriptors: Cheating, Test Items, Mathematics, Statistics
Tijmstra, Jesper; Hessen, David J.; van der Heijden, Peter G. M.; Sijtsma, Klaas – Psychometrika, 2013
Most dichotomous item response models share the assumption of latent monotonicity, which states that the probability of a positive response to an item is a nondecreasing function of a latent variable intended to be measured. Latent monotonicity cannot be evaluated directly, but it implies manifest monotonicity across a variety of observed scores,…
Descriptors: Item Response Theory, Statistical Inference, Probability, Psychometrics
Köhler, Carmen; Pohl, Steffi; Carstensen, Claus H. – Educational and Psychological Measurement, 2015
When competence tests are administered, subjects frequently omit items. These missing responses pose a threat to correctly estimating the proficiency level. Newer model-based approaches aim to take nonignorable missing data processes into account by incorporating a latent missing propensity into the measurement model. Two assumptions are typically…
Descriptors: Competence, Tests, Evaluation Methods, Adults
Johnson, Timothy R. – Applied Psychological Measurement, 2013
One of the distinctions between classical test theory and item response theory is that the former focuses on sum scores and their relationship to true scores, whereas the latter concerns item responses and their relationship to latent scores. Although item response theory is often viewed as the richer of the two theories, sum scores are still…
Descriptors: Item Response Theory, Scores, Computation, Bayesian Statistics
Sueiro, Manuel J.; Abad, Francisco J. – Educational and Psychological Measurement, 2011
The distance between nonparametric and parametric item characteristic curves has been proposed as an index of goodness of fit in item response theory in the form of a root integrated squared error index. This article proposes to use the posterior distribution of the latent trait as the nonparametric model and compares the performance of an index…
Descriptors: Goodness of Fit, Item Response Theory, Nonparametric Statistics, Probability
Glas, Cees A. W.; Pimentel, Jonald L. – Educational and Psychological Measurement, 2008
In tests with time limits, items at the end are often not reached. Usually, the pattern of missing responses depends on the ability level of the respondents; therefore, missing data are not ignorable in statistical inference. This study models data using a combination of two item response theory (IRT) models: one for the observed response data and…
Descriptors: Intelligence Tests, Statistical Inference, Item Response Theory, Modeling (Psychology)
Watson, Jane M.; Callingham, Rosemary A.; Kelly, Ben A. – Mathematical Thinking and Learning: An International Journal, 2007
This study presents the results of a partial credit Rasch analysis of in-depth interview data exploring statistical understanding of 73 school students in 6 contextual settings. The use of Rasch analysis allowed the exploration of a single underlying variable across contexts, which included probability sampling, representation of temperature…
Descriptors: Statistics, Comprehension, Concept Formation, Probability