Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 1 |
| Since 2017 (last 10 years) | 1 |
| Since 2007 (last 20 years) | 6 |
Descriptor
Source
| Cognitive Science | 1 |
| Educational Technology &… | 1 |
| International Educational… | 1 |
| Journal of Educational Data… | 1 |
| Journal of Educational and… | 1 |
| Psychological Review | 1 |
Author
| Blei, David M. | 1 |
| Chang, Hua-hua | 1 |
| Gershman, Samuel J. | 1 |
| Griffiths, Thomas L. | 1 |
| Huang, Tien-Chi | 1 |
| Huang, Yueh-Min | 1 |
| Hwang, Wu-Yuin | 1 |
| Kalish, Michael L. | 1 |
| Koedinger, Kenneth R. | 1 |
| Li, Xiao | 1 |
| Liu, Ran | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 5 |
| Reports - Research | 5 |
| Reports - Evaluative | 1 |
| Speeches/Meeting Papers | 1 |
Education Level
| Higher Education | 1 |
| Postsecondary Education | 1 |
Audience
Location
| Taiwan | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Li, Xiao; Xu, Hanchen; Zhang, Jinming; Chang, Hua-hua – Journal of Educational and Behavioral Statistics, 2023
The adaptive learning problem concerns how to create an individualized learning plan (also referred to as a learning policy) that chooses the most appropriate learning materials based on a learner's latent traits. In this article, we study an important yet less-addressed adaptive learning problem--one that assumes continuous latent traits.…
Descriptors: Learning Processes, Models, Algorithms, Individualized Instruction
MacLellan, Christopher J.; Liu, Ran; Koedinger, Kenneth R. – International Educational Data Mining Society, 2015
Additive Factors Model (AFM) and Performance Factors Analysis (PFA) are two popular models of student learning that employ logistic regression to estimate parameters and predict performance. This is in contrast to Bayesian Knowledge Tracing (BKT) which uses a Hidden Markov Model formalism. While all three models tend to make similar predictions,…
Descriptors: Factor Analysis, Regression (Statistics), Knowledge Level, Markov Processes
van de Sande, Brett – Journal of Educational Data Mining, 2013
Bayesian Knowledge Tracing is used very widely to model student learning. It comes in two different forms: The first form is the Bayesian Knowledge Tracing "hidden Markov model" which predicts the probability of correct application of a skill as a function of the number of previous opportunities to apply that skill and the model…
Descriptors: Bayesian Statistics, Markov Processes, Student Evaluation, Probability
Gershman, Samuel J.; Blei, David M.; Niv, Yael – Psychological Review, 2010
A. Redish et al. (2007) proposed a reinforcement learning model of context-dependent learning and extinction in conditioning experiments, using the idea of "state classification" to categorize new observations into states. In the current article, the authors propose an interpretation of this idea in terms of normative statistical inference. They…
Descriptors: Conditioning, Statistical Inference, Inferences, Bayesian Statistics
Griffiths, Thomas L.; Kalish, Michael L. – Cognitive Science, 2007
Languages are transmitted from person to person and generation to generation via a process of iterated learning: people learn a language from other people who once learned that language themselves. We analyze the consequences of iterated learning for learning algorithms based on the principles of Bayesian inference, assuming that learners compute…
Descriptors: Probability, Diachronic Linguistics, Statistical Inference, Language Universals
Huang, Yueh-Min; Huang, Tien-Chi; Wang, Kun-Te; Hwang, Wu-Yuin – Educational Technology & Society, 2009
The ability to apply existing knowledge in new situations and settings is clearly a vital skill that all students need to develop. Nowhere is this truer than in the rapidly developing world of Web-based learning, which is characterized by non-sequential courses and the absence of an effective cross-subject guidance system. As a result, questions…
Descriptors: Markov Processes, Transfer of Training, Probability, Internet

Peer reviewed
Direct link
