Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 10 |
Since 2006 (last 20 years) | 18 |
Descriptor
Models | 20 |
Probability | 20 |
Statistical Inference | 20 |
Bayesian Statistics | 11 |
Computation | 8 |
Comparative Analysis | 5 |
Monte Carlo Methods | 4 |
Data Analysis | 3 |
Effect Size | 3 |
Equations (Mathematics) | 3 |
Evaluation Methods | 3 |
More ▼ |
Source
Author
Lee, Michael D. | 2 |
Mislevy, Robert J. | 2 |
Wagenmakers, Eric-Jan | 2 |
Aslin, Richard | 1 |
Beland, Anne | 1 |
Ben-Zvi, Dani | 1 |
Benjamini, Yoav | 1 |
Bernt Karlson, Kristian | 1 |
Blackwell, Matthew | 1 |
Blei, David M. | 1 |
Braun, Henry | 1 |
More ▼ |
Publication Type
Journal Articles | 16 |
Reports - Research | 10 |
Reports - Evaluative | 5 |
Reports - Descriptive | 3 |
Dissertations/Theses -… | 2 |
Opinion Papers | 1 |
Education Level
Elementary Education | 1 |
Grade 6 | 1 |
High Schools | 1 |
Intermediate Grades | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Researchers | 3 |
Location
Israel | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Study… | 2 |
Program for the International… | 1 |
Teaching and Learning… | 1 |
What Works Clearinghouse Rating
Yuqi Gu; Elena A. Erosheva; Gongjun Xu; David B. Dunson – Grantee Submission, 2023
Mixed Membership Models (MMMs) are a popular family of latent structure models for complex multivariate data. Instead of forcing each subject to belong to a single cluster, MMMs incorporate a vector of subject-specific weights characterizing partial membership across clusters. With this flexibility come challenges in uniquely identifying,…
Descriptors: Multivariate Analysis, Item Response Theory, Bayesian Statistics, Models
Breen, Richard; Bernt Karlson, Kristian; Holm, Anders – Sociological Methods & Research, 2021
The Karlson-Holm-Breen (KHB) method has rapidly become popular as a way of separating the impact of confounding from rescaling when comparing conditional and unconditional parameter estimates in nonlinear probability models such as the logit and probit. In this note, we show that the same estimates can be obtained in a somewhat different way to…
Descriptors: Probability, Models, Computation, Comparative Analysis
David Kaplan; Kjorte Harra – OECD Publishing, 2023
This report aims to showcase the value of implementing a Bayesian framework to analyse and report results from international large-scale surveys and provide guidance to users who want to analyse the data using this approach. The motivation for this report stems from the recognition that Bayesian statistical inference is fast becoming a popular…
Descriptors: Bayesian Statistics, Statistical Inference, Data Analysis, Educational Research
Gurkan, Gulsah; Benjamini, Yoav; Braun, Henry – Large-scale Assessments in Education, 2021
Employing nested sequences of models is a common practice when exploring the extent to which one set of variables mediates the impact of another set. Such an analysis in the context of logistic regression models confronts two challenges: (1) direct comparisons of coefficients across models are generally biased due to the changes in scale that…
Descriptors: Statistical Inference, Regression (Statistics), Adults, Models
Dvir, Michal; Ben-Zvi, Dani – Mathematical Thinking and Learning: An International Journal, 2023
Employing a statistical modeling inspired pedagogy is becoming a widespread practice in the statistics education community. Many have incorporated the practice of formulating conjectures in their modeling-enhanced educational designs and have reported on its benefits. We further elucidate the mechanism through which students' conjecturing may be…
Descriptors: Mathematics Instruction, Teaching Methods, Statistics Education, Instructional Design
Shi, Yongren; Cameron, Christopher J.; Heckathorn, Douglas D. – Sociological Methods & Research, 2019
Respondent-driven sampling (RDS), a link-tracing sampling and inference method for studying hard-to-reach populations, has been shown to produce asymptotically unbiased population estimates when its assumptions are satisfied. However, some of the assumptions are prohibitively difficult to reach in the field, and the violation of a crucial…
Descriptors: Statistical Inference, Bias, Recruitment, Sampling
Cai, Tianji; Xia, Yiwei; Zhou, Yisu – Sociological Methods & Research, 2021
Analysts of discrete data often face the challenge of managing the tendency of inflation on certain values. When treated improperly, such phenomenon may lead to biased estimates and incorrect inferences. This study extends the existing literature on single-value inflated models and develops a general framework to handle variables with more than…
Descriptors: Statistical Distributions, Probability, Statistical Analysis, Statistical Bias
Duxbury, Scott W. – Sociological Methods & Research, 2023
This study shows that residual variation can cause problems related to scaling in exponential random graph models (ERGM). Residual variation is likely to exist when there are unmeasured variables in a model--even those uncorrelated with other predictors--or when the logistic form of the model is inappropriate. As a consequence, coefficients cannot…
Descriptors: Graphs, Scaling, Research Problems, Models
Marsman, Maarten; Wagenmakers, Eric-Jan – Educational and Psychological Measurement, 2017
P values have been critiqued on several grounds but remain entrenched as the dominant inferential method in the empirical sciences. In this article, we elaborate on the fact that in many statistical models, the one-sided "P" value has a direct Bayesian interpretation as the approximate posterior mass for values lower than zero. The…
Descriptors: Bayesian Statistics, Statistical Inference, Probability, Statistical Analysis
Blackwell, Matthew; Honaker, James; King, Gary – Sociological Methods & Research, 2017
We extend a unified and easy-to-use approach to measurement error and missing data. In our companion article, Blackwell, Honaker, and King give an intuitive overview of the new technique, along with practical suggestions and empirical applications. Here, we offer more precise technical details, more sophisticated measurement error model…
Descriptors: Error of Measurement, Correlation, Simulation, Bayesian Statistics
Piantadosi, Steven T.; Kidd, Celeste; Aslin, Richard – Developmental Science, 2014
Studies of infant looking times over the past 50 years have provided profound insights about cognitive development, but their dependent measures and analytic techniques are quite limited. In the context of infants' attention to discrete sequential events, we show how a Bayesian data analysis approach can be combined with a rational cognitive…
Descriptors: Infants, Eye Movements, Infant Behavior, Cognitive Development
Lee, Michael D.; Pooley, James P. – Psychological Review, 2013
The scale-invariant memory, perception, and learning (SIMPLE) model developed by Brown, Neath, and Chater (2007) formalizes the theoretical idea that scale invariance is an important organizing principle across numerous cognitive domains and has made an influential contribution to the literature dealing with modeling human memory. In the context…
Descriptors: Recall (Psychology), Memory, Models, Equations (Mathematics)
Rutstein, Daisy Wise – ProQuest LLC, 2012
This research examines issues regarding model estimation and robustness in the use of Bayesian Inference Networks (BINs) for measuring Learning Progressions (LPs). It provides background information on LPs and how they might be used in practice. Two simulation studies are performed, along with real data examples. The first study examines the case…
Descriptors: Bayesian Statistics, Learning Processes, Robustness (Statistics), Statistical Inference
Callister Everson, Kimberlee; Feinauer, Erika; Sudweeks, Richard R. – Harvard Educational Review, 2013
In this article, the authors provide a methodological critique of the current standard of value-added modeling forwarded in educational policy contexts as a means of measuring teacher effectiveness. Conventional value-added estimates of teacher quality are attempts to determine to what degree a teacher would theoretically contribute, on average,…
Descriptors: Teacher Evaluation, Teacher Effectiveness, Evaluation Methods, Accountability
Ghosh, Indranil – ProQuest LLC, 2011
Consider a discrete bivariate random variable (X, Y) with possible values x[subscript 1], x[subscript 2],..., x[subscript I] for X and y[subscript 1], y[subscript 2],..., y[subscript J] for Y. Further suppose that the corresponding families of conditional distributions, for X given values of Y and of Y for given values of X are available. We…
Descriptors: Information Theory, Models, Programming, Mathematical Applications
Previous Page | Next Page »
Pages: 1 | 2