Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 11 |
Descriptor
Markov Processes | 11 |
Prediction | 11 |
Probability | 11 |
Bayesian Statistics | 7 |
Models | 6 |
Intelligent Tutoring Systems | 5 |
Accuracy | 3 |
Statistical Analysis | 3 |
Student Evaluation | 3 |
Equations (Mathematics) | 2 |
Foreign Countries | 2 |
More ▼ |
Source
Author
Brunskill, Emma | 2 |
Doroudi, Shayan | 2 |
Chu, Yu | 1 |
Gonzalez-Brenes, Jose P. | 1 |
Gross, Markus | 1 |
Huang, Tien-Chi | 1 |
Huang, Yueh-Min | 1 |
Hwang, Wu-Yuin | 1 |
Kaser, Tanja | 1 |
Klingler, Severin | 1 |
Li, Guo-Dong | 1 |
More ▼ |
Publication Type
Journal Articles | 8 |
Reports - Research | 7 |
Reports - Evaluative | 3 |
Speeches/Meeting Papers | 3 |
Reports - Descriptive | 1 |
Education Level
Higher Education | 2 |
Postsecondary Education | 2 |
Audience
Location
China | 1 |
Pennsylvania (Pittsburgh) | 1 |
Taiwan | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Meng, Lingling; Zhang, Mingxin; Zhang, Wanxue; Chu, Yu – Interactive Learning Environments, 2021
Bayesian knowledge tracing model (BKT) is a typical student knowledge assessment method. It is widely used in intelligent tutoring systems. In the standard BKT model, all knowledge and skills are independent of each other. However, in the process of student learning, they have a very close relation. A student may understand knowledge B better when…
Descriptors: Bayesian Statistics, Intelligent Tutoring Systems, Student Evaluation, Knowledge Level
Doroudi, Shayan; Brunskill, Emma – International Educational Data Mining Society, 2017
In this paper, we investigate two purported problems with Bayesian Knowledge Tracing (BKT), a popular statistical model of student learning: "identifiability" and "semantic model degeneracy." In 2007, Beck and Chang stated that BKT is susceptible to an "identifiability problem"--various models with different…
Descriptors: Bayesian Statistics, Research Problems, Models, Learning
Doroudi, Shayan; Brunskill, Emma – Grantee Submission, 2017
In this paper, we investigate two purported problems with Bayesian Knowledge Tracing (BKT), a popular statistical model of student learning: "identifiability" and "semantic model degeneracy." In 2007, Beck and Chang stated that BKT is susceptible to an "identifiability problem"--various models with different…
Descriptors: Bayesian Statistics, Research Problems, Statistical Analysis, Models
Whitehill, Jacob; Movellan, Javier – IEEE Transactions on Learning Technologies, 2018
We propose a method of generating teaching policies for use in intelligent tutoring systems (ITS) for concept learning tasks [1], e.g., teaching students the meanings of words by showing images that exemplify their meanings à la Rosetta Stone [2] and Duo Lingo [3]. The approach is grounded in control theory and capitalizes on recent work by [4],…
Descriptors: Intelligent Tutoring Systems, Second Language Learning, Educational Policy, Comparative Analysis
Kaser, Tanja; Klingler, Severin; Schwing, Alexander G.; Gross, Markus – IEEE Transactions on Learning Technologies, 2017
Intelligent tutoring systems adapt the curriculum to the needs of the individual student. Therefore, an accurate representation and prediction of student knowledge is essential. Bayesian Knowledge Tracing (BKT) is a popular approach for student modeling. The structure of BKT models, however, makes it impossible to represent the hierarchy and…
Descriptors: Bayesian Statistics, Models, Intelligent Tutoring Systems, Networks
Marron, Megan M.; Wahed, Abdus S. – Journal of Statistics Education, 2016
Missing data mechanisms, methods of handling missing data, and the potential impact of missing data on study results are usually not taught until graduate school. However, the appropriate handling of missing data is fundamental to biomedical research and should be introduced earlier on in a student's education. The Summer Institute for Training in…
Descriptors: Summer Programs, Undergraduate Students, Data, Statistics
Testolin, Alberto; Stoianov, Ivilin; Sperduti, Alessandro; Zorzi, Marco – Cognitive Science, 2016
Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language. One possible solution is to learn a probabilistic generative model of sequences that allows making predictions about upcoming events. Though appealing from a neurobiological standpoint, this approach is typically not pursued in…
Descriptors: Orthographic Symbols, Neurological Organization, Models, Probability
van de Sande, Brett – Journal of Educational Data Mining, 2013
Bayesian Knowledge Tracing is used very widely to model student learning. It comes in two different forms: The first form is the Bayesian Knowledge Tracing "hidden Markov model" which predicts the probability of correct application of a skill as a function of the number of previous opportunities to apply that skill and the model…
Descriptors: Bayesian Statistics, Markov Processes, Student Evaluation, Probability
Gonzalez-Brenes, Jose P.; Mostow, Jack – International Educational Data Mining Society, 2012
This work describes a unified approach to two problems previously addressed separately in Intelligent Tutoring Systems: (i) Cognitive Modeling, which factorizes problem solving steps into the latent set of skills required to perform them; and (ii) Student Modeling, which infers students' learning by observing student performance. The practical…
Descriptors: Intelligent Tutoring Systems, Academic Achievement, Bayesian Statistics, Tutors
Li, Guo-Dong; Yamaguchi, Daisuke; Nagai, Masatake; Masuda, Shiro – International Journal of Learning and Change, 2008
In this paper, we propose a new prediction analysis model which combines the first order one variable Grey differential equation Model (abbreviated as GM(1,1) model) from grey system theory and time series Autoregressive Integrated Moving Average (ARIMA) model from statistics theory. We abbreviate the combined GM(1,1) ARIMA model as ARGM(1,1)…
Descriptors: Markov Processes, Prediction, Statistical Data, Foreign Countries
Huang, Yueh-Min; Huang, Tien-Chi; Wang, Kun-Te; Hwang, Wu-Yuin – Educational Technology & Society, 2009
The ability to apply existing knowledge in new situations and settings is clearly a vital skill that all students need to develop. Nowhere is this truer than in the rapidly developing world of Web-based learning, which is characterized by non-sequential courses and the absence of an effective cross-subject guidance system. As a result, questions…
Descriptors: Markov Processes, Transfer of Training, Probability, Internet