Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 1 |
| Since 2017 (last 10 years) | 2 |
| Since 2007 (last 20 years) | 9 |
Descriptor
| Intervals | 10 |
| Probability | 10 |
| Sampling | 10 |
| Computation | 4 |
| Correlation | 3 |
| Statistics | 3 |
| Comparative Analysis | 2 |
| Effect Size | 2 |
| Inferences | 2 |
| Mathematics Instruction | 2 |
| Meta Analysis | 2 |
| More ▼ | |
Source
Author
Publication Type
| Journal Articles | 9 |
| Reports - Research | 6 |
| Reports - Descriptive | 3 |
| Multilingual/Bilingual… | 1 |
| Reports - Evaluative | 1 |
| Speeches/Meeting Papers | 1 |
Education Level
| Higher Education | 3 |
Audience
| Researchers | 1 |
Location
| Mexico | 1 |
| United States | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Gonzalez, Oscar – Educational and Psychological Measurement, 2023
When scores are used to make decisions about respondents, it is of interest to estimate classification accuracy (CA), the probability of making a correct decision, and classification consistency (CC), the probability of making the same decision across two parallel administrations of the measure. Model-based estimates of CA and CC computed from the…
Descriptors: Classification, Accuracy, Intervals, Probability
Jacobs, Perke; Viechtbauer, Wolfgang – Research Synthesis Methods, 2017
Meta-analyses are often used to synthesize the findings of studies examining the correlational relationship between two continuous variables. When only dichotomous measurements are available for one of the two variables, the biserial correlation coefficient can be used to estimate the product-moment correlation between the two underlying…
Descriptors: Sampling, Correlation, Meta Analysis, Measurement
Inzunsa Cazares, Santiago – North American Chapter of the International Group for the Psychology of Mathematics Education, 2016
This article presents the results of a qualitative research with a group of 15 university students of social sciences on informal inferential reasoning developed in a computer environment on concepts involved in the confidence intervals. The results indicate that students developed a correct reasoning about sampling variability and visualized…
Descriptors: Qualitative Research, College Students, Inferences, Logical Thinking
Ruscio, John; Gera, Benjamin Lee – Multivariate Behavioral Research, 2013
Researchers are strongly encouraged to accompany the results of statistical tests with appropriate estimates of effect size. For 2-group comparisons, a probability-based effect size estimator ("A") has many appealing properties (e.g., it is easy to understand, robust to violations of parametric assumptions, insensitive to outliers). We review…
Descriptors: Psychological Studies, Gender Differences, Researchers, Test Results
Curran-Everett, Douglas – Advances in Physiology Education, 2009
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This third installment of "Explorations in Statistics" investigates confidence intervals. A confidence interval is a range that we expect, with some level of confidence, to include the true value of a population parameter…
Descriptors: Statistics, Intervals, Probability, Computation
Noll, Jennifer; Shaughnessy, J. Michael – Journal for Research in Mathematics Education, 2012
Sampling tasks and sampling distributions provide a fertile realm for investigating students' conceptions of variability. A project-designed teaching episode on samples and sampling distributions was team-taught in 6 research classrooms (2 middle school and 4 high school) by the investigators and regular classroom mathematics teachers. Data…
Descriptors: Sampling, Mathematics Teachers, Middle Schools, High Schools
Sanchez-Meca, Julio; Marin-Martinez, Fulgencio – Psychological Methods, 2008
One of the main objectives in meta-analysis is to estimate the overall effect size by calculating a confidence interval (CI). The usual procedure consists of assuming a standard normal distribution and a sampling variance defined as the inverse of the sum of the estimated weights of the effect sizes. But this procedure does not take into account…
Descriptors: Intervals, Monte Carlo Methods, Meta Analysis, Effect Size
Gordon, Sheldon P.; Gordon, Florence S. – PRIMUS, 2009
The authors describe a collection of dynamic interactive simulations for teaching and learning most of the important ideas and techniques of introductory statistics and probability. The modules cover such topics as randomness, simulations of probability experiments such as coin flipping, dice rolling and general binomial experiments, a simulation…
Descriptors: Intervals, Hypothesis Testing, Statistics, Probability
Hansson, Patrik; Juslin, Peter; Winman, Anders – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2008
Research with general knowledge items demonstrates extreme overconfidence when people estimate confidence intervals for unknown quantities, but close to zero overconfidence when the same intervals are assessed by probability judgment. In 3 experiments, the authors investigated if the overconfidence specific to confidence intervals derives from…
Descriptors: Intervals, Short Term Memory, Probability, Role
Winman, Anders; Hansson, Patrik; Juslin, Peter – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2004
Format dependence implies that assessment of the same subjective probability distribution produces different conclusions about over- or underconfidence depending on the assessment format. In 2 experiments, the authors demonstrate that the overconfidence bias that occurs when participants produce intervals for an uncertain quantity is almost…
Descriptors: Probability, Intervals, Sampling, Psychological Studies

Peer reviewed
Direct link
