Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 7 |
Descriptor
Causal Models | 7 |
Probability | 7 |
Statistical Bias | 7 |
Scores | 4 |
Computation | 3 |
Statistical Inference | 3 |
Effect Size | 2 |
Error of Measurement | 2 |
Evaluation Methods | 2 |
Generalization | 2 |
Hierarchical Linear Modeling | 2 |
More ▼ |
Source
ProQuest LLC | 3 |
Asia Pacific Education Review | 1 |
Evaluation Review | 1 |
Practical Assessment,… | 1 |
Sociological Methods &… | 1 |
Author
Bellara, Aarti P. | 1 |
Beth A. Perkins | 1 |
Deutsch, Jonah | 1 |
Goeun Lee | 1 |
Issa J. Dahabreh | 1 |
Jin-young Choi | 1 |
Jon A. Steingrimsson | 1 |
Myoung-jae Lee | 1 |
Sarah E. Robertson | 1 |
Scott, Paul Wesley | 1 |
Wendy Chan | 1 |
More ▼ |
Publication Type
Journal Articles | 4 |
Reports - Research | 4 |
Dissertations/Theses -… | 3 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Wendy Chan – Asia Pacific Education Review, 2024
As evidence from evaluation and experimental studies continue to influence decision and policymaking, applied researchers and practitioners require tools to derive valid and credible inferences. Over the past several decades, research in causal inference has progressed with the development and application of propensity scores. Since their…
Descriptors: Probability, Scores, Causal Models, Statistical Inference
Myoung-jae Lee; Goeun Lee; Jin-young Choi – Sociological Methods & Research, 2025
A linear model is often used to find the effect of a binary treatment D on a noncontinuous outcome Y with covariates X. Particularly, a binary Y gives the popular "linear probability model (LPM)," but the linear model is untenable if X contains a continuous regressor. This raises the question: what kind of treatment effect does the…
Descriptors: Probability, Least Squares Statistics, Regression (Statistics), Causal Models
Sarah E. Robertson; Jon A. Steingrimsson; Issa J. Dahabreh – Evaluation Review, 2024
When planning a cluster randomized trial, evaluators often have access to an enumerated cohort representing the target population of clusters. Practicalities of conducting the trial, such as the need to oversample clusters with certain characteristics in order to improve trial economy or support inferences about subgroups of clusters, may preclude…
Descriptors: Randomized Controlled Trials, Generalization, Inferences, Hierarchical Linear Modeling
Beth A. Perkins – ProQuest LLC, 2021
In educational contexts, students often self-select into specific interventions (e.g., courses, majors, extracurricular programming). When students self-select into an intervention, systematic group differences may impact the validity of inferences made regarding the effect of the intervention. Propensity score methods are commonly used to reduce…
Descriptors: Probability, Causal Models, Evaluation Methods, Control Groups
Scott, Paul Wesley – Practical Assessment, Research & Evaluation, 2019
Two approaches to causal inference in the presence of non-random assignment are presented: The Propensity Score approach which pseudo-randomizes by balancing groups on observed propensity to be in treatment, and the Endogenous Treatment Effects approach which utilizes systems of equations to explicitly model selection into treatment. The three…
Descriptors: Causal Models, Statistical Inference, Probability, Scores
Bellara, Aarti P. – ProQuest LLC, 2013
Propensity score analysis has been used to minimize the selection bias in observational studies to identify causal relationships. A propensity score is an estimate of an individual's probability of being placed in a treatment group given a set of covariates. Propensity score analysis aims to use the estimate to create balanced groups, akin to a…
Descriptors: Scores, Probability, Monte Carlo Methods, Statistical Analysis
Deutsch, Jonah – ProQuest LLC, 2013
This dissertation is composed of three distinct chapters, each of which addresses issues of estimating treatment effects. The first chapter empirically tests the Value-Added (VA) model using school lotteries. The second chapter, co-authored with Michael Wood, considers properties of inverse probability weighting (IPW) in simple treatment effect…
Descriptors: Computation, Causal Models, Probability, Scores