Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 11 |
Since 2006 (last 20 years) | 15 |
Descriptor
Monte Carlo Methods | 16 |
Probability | 16 |
Statistical Inference | 16 |
Bayesian Statistics | 10 |
Markov Processes | 7 |
Computation | 6 |
Maximum Likelihood Statistics | 5 |
Models | 4 |
Sampling | 4 |
Simulation | 4 |
Statistical Bias | 4 |
More ▼ |
Source
Author
Blackwell, Matthew | 2 |
Honaker, James | 2 |
King, Gary | 2 |
Levy, Roy | 2 |
An, Chen | 1 |
Batley, Prathiba Natesan | 1 |
Betancourt, Michael | 1 |
Blei, David M. | 1 |
Braun, Henry | 1 |
Brubaker, Marcus A. | 1 |
Cai, Tianji | 1 |
More ▼ |
Publication Type
Journal Articles | 13 |
Reports - Research | 10 |
Reports - Descriptive | 3 |
Reports - Evaluative | 2 |
Dissertations/Theses -… | 1 |
Education Level
Elementary Education | 2 |
Middle Schools | 2 |
Early Childhood Education | 1 |
Junior High Schools | 1 |
Kindergarten | 1 |
Primary Education | 1 |
Secondary Education | 1 |
Audience
Researchers | 4 |
Students | 1 |
Location
South Carolina | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 1 |
National Longitudinal Study… | 1 |
What Works Clearinghouse Rating
Shen, Ting; Konstantopoulos, Spyros – Journal of Experimental Education, 2022
Large-scale education data are collected via complex sampling designs that incorporate clustering and unequal probability of selection. Multilevel models are often utilized to account for clustering effects. The probability weighted approach (PWA) has been frequently used to deal with the unequal probability of selection. In this study, we examine…
Descriptors: Data Collection, Educational Research, Hierarchical Linear Modeling, Bayesian Statistics
Kelter, Riko – Measurement: Interdisciplinary Research and Perspectives, 2020
Survival analysis is an important analytic method in the social and medical sciences. Also known under the name time-to-event analysis, this method provides parameter estimation and model fitting commonly conducted via maximum-likelihood. Bayesian survival analysis offers multiple advantages over the frequentist approach for measurement…
Descriptors: Bayesian Statistics, Maximum Likelihood Statistics, Programming Languages, Statistical Inference
Levy, Roy – Educational Measurement: Issues and Practice, 2020
In this digital ITEMS module, Dr. Roy Levy describes Bayesian approaches to psychometric modeling. He discusses how Bayesian inference is a mechanism for reasoning in a probability-modeling framework and is well-suited to core problems in educational measurement: reasoning from student performances on an assessment to make inferences about their…
Descriptors: Bayesian Statistics, Psychometrics, Item Response Theory, Statistical Inference
Cai, Tianji; Xia, Yiwei; Zhou, Yisu – Sociological Methods & Research, 2021
Analysts of discrete data often face the challenge of managing the tendency of inflation on certain values. When treated improperly, such phenomenon may lead to biased estimates and incorrect inferences. This study extends the existing literature on single-value inflated models and develops a general framework to handle variables with more than…
Descriptors: Statistical Distributions, Probability, Statistical Analysis, Statistical Bias
Batley, Prathiba Natesan; Minka, Tom; Hedges, Larry Vernon – Grantee Submission, 2020
Immediacy is one of the necessary criteria to show strong evidence of treatment effect in single case experimental designs (SCEDs). With the exception of Natesan and Hedges (2017) no inferential statistical tool has been used to demonstrate or quantify it until now. We investigate and quantify immediacy by treating the change-points between the…
Descriptors: Bayesian Statistics, Monte Carlo Methods, Statistical Inference, Markov Processes
Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; Lee, Daniel; Goodrich, Ben; Betancourt, Michael; Brubaker, Marcus A.; Guo, Jiqiang; Li, Peter; Riddell, Allen – Grantee Submission, 2017
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the…
Descriptors: Programming Languages, Probability, Bayesian Statistics, Monte Carlo Methods
Blackwell, Matthew; Honaker, James; King, Gary – Sociological Methods & Research, 2017
Although social scientists devote considerable effort to mitigating measurement error during data collection, they often ignore the issue during data analysis. And although many statistical methods have been proposed for reducing measurement error-induced biases, few have been widely used because of implausible assumptions, high levels of model…
Descriptors: Error of Measurement, Monte Carlo Methods, Data Collection, Simulation
Maeda, Hotaka; Zhang, Bo – International Journal of Testing, 2017
The omega (?) statistic is reputed to be one of the best indices for detecting answer copying on multiple choice tests, but its performance relies on the accurate estimation of copier ability, which is challenging because responses from the copiers may have been contaminated. We propose an algorithm that aims to identify and delete the suspected…
Descriptors: Cheating, Test Items, Mathematics, Statistics
Leth-Steensen, Craig; Gallitto, Elena – Educational and Psychological Measurement, 2016
A large number of approaches have been proposed for estimating and testing the significance of indirect effects in mediation models. In this study, four sets of Monte Carlo simulations involving full latent variable structural equation models were run in order to contrast the effectiveness of the currently popular bias-corrected bootstrapping…
Descriptors: Mediation Theory, Structural Equation Models, Monte Carlo Methods, Simulation
An, Chen; Braun, Henry; Walsh, Mary E. – Educational Measurement: Issues and Practice, 2018
Making causal inferences from a quasi-experiment is difficult. Sensitivity analysis approaches to address hidden selection bias thus have gained popularity. This study serves as an introduction to a simple but practical form of sensitivity analysis using Monte Carlo simulation procedures. We examine estimated treatment effects for a school-based…
Descriptors: Statistical Inference, Intervention, Program Effectiveness, Quasiexperimental Design
Blackwell, Matthew; Honaker, James; King, Gary – Sociological Methods & Research, 2017
We extend a unified and easy-to-use approach to measurement error and missing data. In our companion article, Blackwell, Honaker, and King give an intuitive overview of the new technique, along with practical suggestions and empirical applications. Here, we offer more precise technical details, more sophisticated measurement error model…
Descriptors: Error of Measurement, Correlation, Simulation, Bayesian Statistics
Thur, Scott M. – ProQuest LLC, 2015
The purpose of this study was to measure decision-making influences within RtI teams. The study examined the factors that influence school personnel involved in three areas of RtI: determining which RtI measures and tools teams select and implement (i.e. Measures and Tools), evaluating the data-driven decisions that are made based on the…
Descriptors: Decision Making, Response to Intervention, Teamwork, Data
Johnson, Timothy R. – Applied Psychological Measurement, 2013
One of the distinctions between classical test theory and item response theory is that the former focuses on sum scores and their relationship to true scores, whereas the latter concerns item responses and their relationship to latent scores. Although item response theory is often viewed as the richer of the two theories, sum scores are still…
Descriptors: Item Response Theory, Scores, Computation, Bayesian Statistics
Gershman, Samuel J.; Blei, David M.; Niv, Yael – Psychological Review, 2010
A. Redish et al. (2007) proposed a reinforcement learning model of context-dependent learning and extinction in conditioning experiments, using the idea of "state classification" to categorize new observations into states. In the current article, the authors propose an interpretation of this idea in terms of normative statistical inference. They…
Descriptors: Conditioning, Statistical Inference, Inferences, Bayesian Statistics
Griffiths, Thomas L.; Kalish, Michael L. – Cognitive Science, 2007
Languages are transmitted from person to person and generation to generation via a process of iterated learning: people learn a language from other people who once learned that language themselves. We analyze the consequences of iterated learning for learning algorithms based on the principles of Bayesian inference, assuming that learners compute…
Descriptors: Probability, Diachronic Linguistics, Statistical Inference, Language Universals
Previous Page | Next Page ยป
Pages: 1 | 2