NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Showing 31 to 45 of 194 results Save | Export
Setyani, Geovani Debby; Kristanto, Yosep Dwi – Online Submission, 2020
Drawing inference from data is an important skill for students to understand their everyday life, so that the sampling distribution as a central topic in statistical inference is necessary to be learned by the students. However, little is known about how to teach the topic for high school students, especially in Indonesian context. Therefore, the…
Descriptors: High School Students, Grade 11, Private Schools, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Budgett, Stephanie; Pfannkuch, Maxine – ZDM: The International Journal on Mathematics Education, 2018
Randomness and distribution are important concepts underpinning the ability to think and reason probabilistically. Traditional approaches to teaching the Poisson distribution focus on mathematical definitions and formulae which obscure the randomness intrinsic in this process. Advances in technology have made it possible for students learning…
Descriptors: Mathematical Logic, Mathematical Concepts, Mathematics Instruction, Probability
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Li, Zhen; Cai, Li – Grantee Submission, 2017
In standard item response theory (IRT) applications, the latent variable is typically assumed to be normally distributed. If the normality assumption is violated, the item parameter estimates can become biased. Summed score likelihood based statistics may be useful for testing latent variable distribution fit. We develop Satorra-Bentler type…
Descriptors: Scores, Goodness of Fit, Statistical Distributions, Item Response Theory
Ding, Peng; Dasgupta, Tirthankar – Grantee Submission, 2017
Fisher randomization tests for Neyman's null hypothesis of no average treatment effects are considered in a finite population setting associated with completely randomized experiments with more than two treatments. The consequences of using the F statistic to conduct such a test are examined both theoretically and computationally, and it is argued…
Descriptors: Statistical Analysis, Statistical Inference, Causal Models, Error Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Kang, Hyeon-Ah; Zhang, Susu; Chang, Hua-Hua – Journal of Educational Measurement, 2017
The development of cognitive diagnostic-computerized adaptive testing (CD-CAT) has provided a new perspective for gaining information about examinees' mastery on a set of cognitive attributes. This study proposes a new item selection method within the framework of dual-objective CD-CAT that simultaneously addresses examinees' attribute mastery…
Descriptors: Computer Assisted Testing, Adaptive Testing, Cognitive Tests, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Young, Cristobal; Holsteen, Katherine – Sociological Methods & Research, 2017
Model uncertainty is pervasive in social science. A key question is how robust empirical results are to sensible changes in model specification. We present a new approach and applied statistical software for computational multimodel analysis. Our approach proceeds in two steps: First, we estimate the modeling distribution of estimates across all…
Descriptors: Models, Ambiguity (Context), Robustness (Statistics), Social Science Research
Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; Lee, Daniel; Goodrich, Ben; Betancourt, Michael; Brubaker, Marcus A.; Guo, Jiqiang; Li, Peter; Riddell, Allen – Grantee Submission, 2017
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the…
Descriptors: Programming Languages, Probability, Bayesian Statistics, Monte Carlo Methods
Cain, Meghan K.; Zhang, Zhiyong; Yuan, Ke-Hai – Grantee Submission, 2017
Nonnormality of univariate data has been extensively examined previously (Blanca et al., 2013; Micceri, 1989). However, less is known of the potential nonnormality of multivariate data although multivariate analysis is commonly used in psychological and educational research. Using univariate and multivariate skewness and kurtosis as measures of…
Descriptors: Multivariate Analysis, Probability, Statistical Distributions, Psychological Studies
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Liu, Haiyan; Zhang, Zhiyong; Grimm, Kevin J. – Grantee Submission, 2016
Growth curve modeling provides a general framework for analyzing longitudinal data from social, behavioral, and educational sciences. Bayesian methods have been used to estimate growth curve models, in which priors need to be specified for unknown parameters. For the covariance parameter matrix, the inverse Wishart prior is most commonly used due…
Descriptors: Bayesian Statistics, Computation, Statistical Analysis, Growth Models
Kropko, Jonathan; Goodrich, Ben; Gelman, Andrew; Hill, Jennifer – Grantee Submission, 2014
We consider the relative performance of two common approaches to multiple imputation (MI): joint multivariate normal (MVN) MI, in which the data are modeled as a sample from a joint MVN distribution; and conditional MI, in which each variable is modeled conditionally on all the others. In order to use the multivariate normal distribution,…
Descriptors: Statistical Analysis, Multivariate Analysis, Accuracy, Data
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Miratrix, Luke; Feller, Avi; Pillai, Natesh; Pati, Debdeep – Society for Research on Educational Effectiveness, 2016
Modeling the distribution of site level effects is an important problem, but it is also an incredibly difficult one. Current methods rely on distributional assumptions in multilevel models for estimation. There it is hoped that the partial pooling of site level estimates with overall estimates, designed to take into account individual variation as…
Descriptors: Probability, Models, Statistical Distributions, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Farnsworth, David L. – PRIMUS, 2014
We derive the additive property of Poisson random variables directly from the probability mass function. An important application of the additive property to quality testing of computer chips is presented.
Descriptors: Mathematical Formulas, Calculus, Equations (Mathematics), Tests
Andrew Gelman; Daniel Lee; Jiqiang Guo – Journal of Educational and Behavioral Statistics, 2015
Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users' and developers'…
Descriptors: Programming Languages, Bayesian Statistics, Inferences, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Bartolotti, James; Marian, Viorica – Language Learning, 2017
Learning a new language involves substantial vocabulary acquisition. Learners can accelerate this process by relying on words with native-language overlap, such as cognates. For bilingual third language learners, it is necessary to determine how their two existing languages interact during novel language learning. A scaffolding account predicts…
Descriptors: Bilingual Students, Bilingual Education, Adults, Vocabulary Development
Dunlap, Mickey; Studstill, Sharyn – Teaching Statistics: An International Journal for Teachers, 2014
The number of increases a particular stock makes over a fixed period follows a Poisson distribution. This article discusses using this easily-found data as an opportunity to let students become involved in the data collection and analysis process.
Descriptors: Experiential Learning, Learning Activities, Statistical Distributions, Probability
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  12  |  13