NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 202532
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 32 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Dan Sun; Fan Xu – Journal of Educational Computing Research, 2025
Real-time collaborative programming (RCP), which allows multiple programmers to work concurrently on the same codebase with changes instantly visible to all participants, has garnered considerable popularity in higher education. Despite this trend, little work has rigorously examined how undergraduates engage in collaborative programming when…
Descriptors: Cooperative Learning, Programming, Computer Science Education, Undergraduate Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Irem Nur Çelik; Kati Bati – Informatics in Education, 2025
In this study, we aimed to investigate the impact of cooperative learning on the computational thinking skills and academic performances of middle school students in the computational problem-solving approach. We used the pretest-posttest control group design of the quasiexperimental method. In the research, computational problem-solving…
Descriptors: Cooperative Learning, Academic Achievement, Computation, Thinking Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Chih-Yueh Chou; Wei-Han Chen – Educational Technology & Society, 2025
Studies have shown that students have different help-seeking behavior patterns and tendencies and furthermore, that students with certain help-seeking behavior patterns and tendencies may have poor performance (i.e., at-risk students). This study applied an educational data mining approach, including clustering and classification, to analyze…
Descriptors: Student Behavior, Help Seeking, Problem Solving, Information Retrieval
Peer reviewed Peer reviewed
Direct linkDirect link
Hsiao-Ping Hsu – TechTrends: Linking Research and Practice to Improve Learning, 2025
The advancement of large language model-based generative artificial intelligence (LLM-based GenAI) has sparked significant interest in its potential to address challenges in computational thinking (CT) education. CT, a critical problem-solving approach in the digital age, encompasses elements such as abstraction, iteration, and generalisation.…
Descriptors: Programming, Prompting, Computation, Thinking Skills
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Heidi Taveter; Marina Lepp – Informatics in Education, 2025
Learning programming has become increasingly popular, with learners from diverse backgrounds and experiences requiring different support. Programming-process analysis helps to identify solver types and needs for assistance. The study examined students' behavior patterns in programming among beginners and non-beginners to identify solver types,…
Descriptors: Behavior Patterns, Novices, Expertise, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Athitaya Nitchot; Lester Gilbert – Education and Information Technologies, 2025
Learning programming is a complex process that requires understanding abstract concepts and solving problems efficiently. To support and motivate students, educators can use technology-enhanced learning (TEL) in the form of visual tools for knowledge mapping. Mytelemap, a prototype tool, uses TEL to organize and visualize information, enhancing…
Descriptors: Learning Motivation, Concept Mapping, Programming, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Eunsung Park; Jongpil Cheon – Journal of Educational Computing Research, 2025
Debugging is essential for identifying and rectifying errors in programming, yet time constraints and students' trivialization of errors often hinder progress. This study examines differences in debugging challenges and strategies among students with varying computational thinking (CT) competencies using weekly coding journals from an online…
Descriptors: Undergraduate Students, Programming, Computer Software, Troubleshooting
Peer reviewed Peer reviewed
Direct linkDirect link
Yoonhee Shin; Jaewon Jung; Seohyun Choi; Bokmoon Jung – Education and Information Technologies, 2025
This study investigates the effects of metacognitive and cognitive strategies for computational thinking (CT) on managing cognitive load and enhancing problem-solving skills in collaborative programming. Four different scaffolding conditions were provided to help learners optimize cognitive load and improve their problem-solving abilities. A total…
Descriptors: Scaffolding (Teaching Technique), Mental Computation, Cognitive Processes, Difficulty Level
Peer reviewed Peer reviewed
Direct linkDirect link
Andrea Maffia; Carola Manolino; Elisa Miragliotta – Educational Studies in Mathematics, 2025
Research literature about visually impaired students' approach to mathematics is still very scarce, especially in the case of algebra, even though mathematical content is becoming increasingly accessible thanks to assistive technologies. This paper presents a case study aimed at describing a blind subject's process of algebraic symbol manipulation…
Descriptors: Algebra, Blindness, Mathematics Education, Symbols (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Andreas Brandsaeter; Runar Lie Berge – Educational Studies in Mathematics, 2025
The reasons for teaching programming in school are indeed manifold. Programming can for example be utilized as a vehicle for understanding and learning particular mathematical subject matter, or as a tool for solving mathematical problems. In this paper, however, we propose to utilize programming as a vehicle for developing mathematical…
Descriptors: Mathematics Skills, Skill Development, Competence, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Umar Alkafaween; Ibrahim Albluwi; Paul Denny – Journal of Computer Assisted Learning, 2025
Background: Automatically graded programming assignments provide instant feedback to students and significantly reduce manual grading time for instructors. However, creating comprehensive suites of test cases for programming problems within automatic graders can be time-consuming and complex. The effort needed to define test suites may deter some…
Descriptors: Automation, Grading, Introductory Courses, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Wendy Huang; Chee-Kit Looi; Misong Kim – International Journal of Science and Mathematics Education, 2025
Much attention has been paid to computational thinking (CT) as a problem-solving approach across various curricula, particularly in mathematics. Most studies solely used a digital instrument or examined transfer of program solving ability, neglecting the mathematics knowledge domain or how the novel digital instrument functions alongside the…
Descriptors: Epistemology, Computer Uses in Education, Programming, Secondary School Mathematics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ernst Bekkering; Patrick Harrington – Information Systems Education Journal, 2025
Generative AI has recently gained the ability to generate computer code. This development is bound to affect how computer programming is taught in higher education. We used past programming assignments and solutions for textbook exercises in our introductory programming class to analyze how accurately one of the leading models, ChatGPT, generates…
Descriptors: Higher Education, Artificial Intelligence, Programming, Textbook Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Dwi Maryono; Sajidan; Muhammad Akhyar; Sarwanto; Bayu Tri Wicaksono; Nurcahya Pradana Taufik Prakisya – Discover Education, 2025
This study investigates the integration of adaptive e-learning and gamification through a platform called NgodingSeru.com to improve problem-solving skills in programming among vocational high school students. The adaptive system offers personalized learning by adjusting task difficulty to student's proficiency levels, while gamification elements…
Descriptors: Career and Technical Education Schools, High Schools, High School Students, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Lorien Cafarella; Lucas Vasconcelos – Education and Information Technologies, 2025
Middle school students often enter Computer Science (CS) classes without previous CS or Computational Thinking (CT) instruction. This study evaluated how Code.org's block-based programming curriculum affects middle school students' CT skills and attitudes toward CT and CS. Sixteen students participated in the study. This was a mixed methods action…
Descriptors: Middle School Students, Computation, Thinking Skills, Problem Solving
Previous Page | Next Page »
Pages: 1  |  2  |  3