NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Teachers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 58 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Bhagya Munasinghe; Tim Bell; Anthony Robins – ACM Transactions on Computing Education, 2023
In learning to program and understanding how a programming language controls a computer, learners develop both insights and misconceptions whilst their mental models are gradually refined. It is important that the learner is able to distinguish the different elements and roles of a computer (compiler, interpreter, memory, etc.), which novice…
Descriptors: Computation, Thinking Skills, Programming, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Muldner, Kasia; Jennings, Jay; Chiarelli, Veronica – ACM Transactions on Computing Education, 2023
This article reviews literature on worked examples in the context of programming activities. We focus on two types of examples, namely, code-tracing and code-generation, because there is sufficient research on these to warrant a review. We synthesize key results according to themes that emerged from the review. This synthesis aims to provide…
Descriptors: Problem Solving, Programming, Computer Science Education, Literature Reviews
Peer reviewed Peer reviewed
Direct linkDirect link
Marcella Mandanici; Simone Spagnol – IEEE Transactions on Education, 2024
The purpose of this study is to look at how a music programming course affects the development of computational thinking in undergraduate music conservatory students. In addition to teaching the fundamentals of computational thinking, music programming, and logic, the course addresses the Four C's of education. The change in students' attitudes…
Descriptors: Music Education, Undergraduate Students, Programming, Computer Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Goldenberg, E. Paul; Carter, Cynthia J.; Mark, June; Reed, Kristen; Spencer, Deborah; Coleman, Kate – Digital Experiences in Mathematics Education, 2021
This article reports on an exploration of how second-graders can learn mathematics through programming. We started from the theory that a suitably designed programming language can serve children as a language for expressing and experimenting with mathematical ideas and processes in order to do mathematics and thereby, with appropriate tasks and…
Descriptors: Elementary School Students, Grade 2, Elementary School Mathematics, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Allbee, Quinn; Barber, Robert – Biochemistry and Molecular Biology Education, 2021
Biology is a data-driven discipline facilitated greatly by computer programming skills. This article describes an introductory experiential programming activity that can be integrated into distance learning environments. Students are asked to develop their own Python programs to identify the nature of alleles linked to disease. This activity…
Descriptors: Genetics, Science Instruction, Programming Languages, Biology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Robertson, Judy; Gray, Stuart; Martin, Toye; Booth, Josephine – International Journal of Computer Science Education in Schools, 2020
We argue that understanding the cognitive foundations of computational thinking will assist educators to improve children's learning in computing. We explain the conceptual relationship between executive functions and aspects of computational thinking. We present initial empirical data from 23 eleven year old learners which investigates the…
Descriptors: Executive Function, Computation, Thinking Skills, Mathematics Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Michelle Pauley Murphy; Woei Hung – TechTrends: Linking Research and Practice to Improve Learning, 2024
Constructing a consensus problem space from extensive qualitative data for an ill-structured real-life problem and expressing the result to a broader audience is challenging. To effectively communicate a complex problem space, visualization of that problem space must elucidate inter-causal relationships among the problem variables. In this…
Descriptors: Information Retrieval, Data Analysis, Pattern Recognition, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Valerie Critten; Hannah Hagon; Melike Aslan Unlu – International Journal of Computer Science Education in Schools, 2024
In light of current developments, there is an increasing effort to integrate computing-oriented activities into the education of children as young as two years old. Although the computing strand is not officially addressed in the Early Years Foundation Stage Statutory Framework (DfES, 2024), a small number of early years teachers in England…
Descriptors: Foreign Countries, Early Childhood Education, Computation, Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Laurent Cervoni; Julien Brasseur – International Association for Development of the Information Society, 2022
A Prolog program consists of a set of facts and rules rather than imperative statements, commonly used in most other programming languages. Therefore, the Prolog language is used to encode logic, from which the inference engine deduces logical conclusions. In this article, we argue that the use of the Prolog language can be useful to help students…
Descriptors: Teaching Methods, Mathematics Instruction, Problem Solving, Programming Languages
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Judith Galezer; Smadar Szekely – Informatics in Education, 2024
Spark, one of the products offered by MyQ (formerly Plethora), is a game-based platform meticulously designed to introduce students to the foundational concepts of computer science. By navigating through logical challenges, users delve into topics like abstraction, loops, and graph patterns. Setting itself apart from its counterparts, Spark boasts…
Descriptors: Learning Management Systems, Game Based Learning, Computer Science Education, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Peel, Amanda; Sadler, Troy D.; Friedrichsen, Patricia – Journal of Science Education and Technology, 2022
Computing has become essential in modern-day problem-solving, making computational literacy necessary for practicing scientists and engineers. However, K-12 science education has not reflected this computational shift. Integrating computational thinking (CT) into core science courses is an avenue that can build computational literacies in all…
Descriptors: Computation, Thinking Skills, Problem Solving, Science Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Denning, Peter J.; Tedre, Matti – Informatics in Education, 2021
Over its short disciplinary history, computing has seen a stunning number of descriptions of the field's characteristic ways of thinking and practicing, under a large number of different labels. One of the more recent variants, notably in the context of K-12 education, is "computational thinking", which became popular in the early 2000s,…
Descriptors: Thinking Skills, Computation, Computer Science, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Peabody, Michael R. – Measurement: Interdisciplinary Research and Perspectives, 2023
Many organizations utilize some form of automation in the test assembly process; either fully algorithmic or heuristically constructed. However, one issue with heuristic models is that when the test assembly problem changes the entire model may need to be re-conceptualized and recoded. In contrast, mixed-integer programming (MIP) is a mathematical…
Descriptors: Programming Languages, Algorithms, Heuristics, Mathematical Models
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Jia-Hua; Meng, Bin; Zou, Liu-Cong; Zhu, Yue; Hwang, Gwo-Jen – Interactive Learning Environments, 2023
As one of the core skills of the 21st century, computational thinking has received increasing attention from educators and researchers. Although some research has been conducted on computational thinking, few studies examined the impact of learning activities on students' computation thinking skills from the perspective of cognitive development.…
Descriptors: Flow Charts, Scaffolding (Teaching Technique), College Students, Computation
Villamor, Maureen M. – Research and Practice in Technology Enhanced Learning, 2020
High attrition and dropout rates are common in introductory programming courses. One of the reasons students drop out is loss of motivation due to the lack of feedback and proper assessment of their progress. Hence, a process-oriented approach is needed in assessing programming progress, which entails examining and measuring students' compilation…
Descriptors: Novices, Problem Solving, Computer Science Education, Introductory Courses
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4