NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Scholes, Colin A.; Hu, Guoping – Chemical Engineering Education, 2021
A practical for students to experience a process plant is presented, based on operating a solvent absorption plant for carbon dioxide capture. The student must operate the plant in assigned roles that closely identify with a chemical plant environment, to achieve specific performance targets. Students must overcome technical challenges that…
Descriptors: Chemical Engineering, Engineering Education, Facilities, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Geng, Jianming; Chen, Kaiyuan; Wang, Nengxin; Ling, Sihan; Guo, Muqi; Huang, Zuyi – Chemical Engineering Education, 2019
US high school (HS) students are lagging behind their foreign peers in math performance. It is thus necessary to design teaching modules that motivate US HS students to learn more math and to improve their math skills. Our study set out to test two different software programs designed for the development of such skills. MATLAB Simulink provides a…
Descriptors: High School Students, Secondary School Mathematics, Mathematics Education, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Murthi, Manohar; Shea, Lonnie D.; Snurr, Randall Q. – Chemical Engineering Education, 2009
Problems requiring numerical solutions of differential equations or the use of agent-based modeling are presented for use in a course on mass transfer. These problems were solved using the popular technical computing language MATLABTM. Students were introduced to MATLAB via a problem with an analytical solution. A more complex problem to which no…
Descriptors: Scientific Concepts, Chemical Engineering, Engineering Education, Calculus
Peer reviewed Peer reviewed
Direct linkDirect link
Shacham, Mordechai; Brauner, Neima; Ashurst, W. Robert; Cutlip, Michael B. – Chemical Engineering Education, 2008
Mathematical software packages such as Polymath, MATLAB, and Mathcad are currently widely used for engineering problem solving. Applications of several of these packages to typical chemical engineering problems have been demonstrated by Cutlip, et al. The main characteristic of these packages is that they provide a "problem-solving environment…
Descriptors: Mathematical Models, Computer Software, Problem Solving, Chemical Engineering
Peer reviewed Peer reviewed
Direct linkDirect link
Shacham, Mordechai; Cutlip, Michael B.; Brauner, Neima – Chemical Engineering Education, 2009
A continuing challenge to the undergraduate chemical engineering curriculum is the time-effective incorporation and use of computer-based tools throughout the educational program. Computing skills in academia and industry require some proficiency in programming and effective use of software packages for solving 1) single-model, single-algorithm…
Descriptors: Computer Software, Computer Literacy, Problem Solving, Chemical Engineering
Peer reviewed Peer reviewed
Direct linkDirect link
Joo, Yong Lak; Choudhary, Devashish – Chemical Engineering Education, 2006
For decades, every chemical engineer has been asked to have a background in separations. The required separations course can, however, be uninspiring and superficial because understanding many separation processes involves conventional graphical methods and commercial process simulators. We utilize simple, user-­friendly mathematical software,…
Descriptors: Visualization, Computation, Chemical Engineering, Engineering Education