Publication Date
In 2025 | 2 |
Since 2024 | 5 |
Since 2021 (last 5 years) | 15 |
Since 2016 (last 10 years) | 22 |
Since 2006 (last 20 years) | 27 |
Descriptor
Source
Informatics in Education | 27 |
Author
Publication Type
Journal Articles | 27 |
Reports - Research | 21 |
Information Analyses | 3 |
Reports - Descriptive | 3 |
Reports - Evaluative | 2 |
Tests/Questionnaires | 2 |
Education Level
Higher Education | 12 |
Postsecondary Education | 12 |
Secondary Education | 8 |
Elementary Education | 4 |
High Schools | 3 |
Elementary Secondary Education | 2 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Juraj Hromkovic; Regula Lacher – Informatics in Education, 2025
The design of algorithms is one of the hardest topics of high school computer science. This is mainly due to the universality of algorithms as solution methods that guarantee the calculation of a correct solution for all potentially infinitely many instances of an algorithmic problem. The goal of this paper is to present a comprehensible and…
Descriptors: Algorithms, Computer Science Education, High School Students, Teaching Methods
Václav Šimandl; Jirí Vanícek; Václav Dobiáš – Informatics in Education, 2025
Research on collaborative learning of computer science has been conducted primarily in programming. This paper extends this area by including short tasks (such as those used in contests like the Bebras Challenge) that cover many other computer science topics. The aim of this research is to explore how problem-solving in pairs differs from…
Descriptors: Cooperative Learning, Problem Solving, Computer Science, Computer Science Education
Dagyeom Lee; Youngjun Lee – Informatics in Education, 2024
As our society has advanced in the era of digital transformation, education has been transformed from knowledge-centered to competency-centered to solve future problems in the light of unpredictable changes and events in our lives. Programming education provides the basic knowledge needed, and fosters higher-order thinking skills in the process of…
Descriptors: Problem Solving, Computer Science Education, Programming, Thinking Skills
Barbosa Rocha, Hemilis Joyse; Cabral De Azevedo Restelli Tedesco, Patrícia; De Barros Costa, Evandro – Informatics in Education, 2023
In programming problem solving activities, sometimes, students need feedback to progress in the course, being positively affected by the received feedback. This paper presents an overview of the state of the art and practice of the feedback approaches on introductory programming. To this end, we have carried out a systematic literature mapping to…
Descriptors: Classification, Computer Science Education, Feedback (Response), Problem Solving
Judith Galezer; Smadar Szekely – Informatics in Education, 2024
Spark, one of the products offered by MyQ (formerly Plethora), is a game-based platform meticulously designed to introduce students to the foundational concepts of computer science. By navigating through logical challenges, users delve into topics like abstraction, loops, and graph patterns. Setting itself apart from its counterparts, Spark boasts…
Descriptors: Learning Management Systems, Game Based Learning, Computer Science Education, Teaching Methods
Mirolo, Claudio; Izu, Cruz; Lonati, Violetta; Scapin, Emanuele – Informatics in Education, 2021
When we "think like a computer scientist," we are able to systematically solve problems in different fields, create software applications that support various needs, and design artefacts that model complex systems. Abstraction is a soft skill embedded in all those endeavours, being a main cornerstone of computational thinking. Our…
Descriptors: Computer Science Education, Soft Skills, Thinking Skills, Abstract Reasoning
Strömbäck, Filip; Mannila, Linda; Kamkar, Mariam – Informatics in Education, 2021
Concurrency is often perceived as difficult by students. One reason for this may be due to the fact that abstractions used in concurrent programs leave more situations undefined compared to sequential programs (e.g., in what order statements are executed), which makes it harder to create a proper mental model of the execution environment. Students…
Descriptors: College Students, Programming, Programming Languages, Concept Formation
Ragonis, Noa; Shmallo, Ronit – Informatics in Education, 2022
Object-oriented programming distinguishes between instance attributes and methods and class attributes and methods, annotated by the "static" modifier. Novices encounter difficulty understanding the means and implications of "static" attributes and methods. The paper has two outcomes: (a) a detailed classification of aspects of…
Descriptors: Programming, Computer Science Education, Concept Formation, Thinking Skills
Andrzejewska, Magdalena; Kotoniak, Pawel – Informatics in Education, 2020
The article discusses the findings of longitudinal studies (three stages spanning 6 months) which were to investigate the process of acquiring the ability to comprehension program code by the computer science students having started to learn to program. The studies were conducted with the use of a knowledge measurement test, the diagnostic survey,…
Descriptors: Programming, Computer Science Education, Knowledge Level, Eye Movements
Nijenhuis-Voogt, Jacqueline; Bayram-Jacobs, Durdane; Meijer, Paulien C.; Barendsen, Erik – Informatics in Education, 2022
Teaching algorithmic thinking enables students to use their knowledge in various contexts to reuse existing solutions to algorithmic problems. The aim of this study is to examine how students recognize which algorithmic concepts can be used in a new situation. We developed a card sorting task and investigated the ways in which secondary school…
Descriptors: Algorithms, Concept Formation, Problem Solving, Thinking Skills
Souza, Isabelle M. L.; Andrade, Wilkerson L.; Sampaio, Lívia M. R. – Informatics in Education, 2022
Nowadays, solving problems is substantial for the social relationship human. Computational Thinking (CT) emerges as an interdisciplinary thought process encompassing mental abilities to help students solve and understand problems. Researchers invest in the methodological proposal of activities aimed at CT stimulation, educational approaches, and…
Descriptors: Robotics, Vocational Education, High School Students, Thinking Skills
Haglund, Pontus; Strömbäck, Filip; Mannila, Linda – Informatics in Education, 2021
Controlling complexity through the use of abstractions is a critical part of problem solving in programming. Thus, becoming proficient with procedural and data abstraction through the use of user-defined functions is important. Properly using functions for abstraction involves a number of other core concepts, such as parameter passing, scope and…
Descriptors: Computer Science Education, Programming, Programming Languages, Problem Solving
Palts, Tauno; Pedaste, Margus – Informatics in Education, 2020
Computer science concepts have an important part in other subjects and thinking computationally is being recognized as an important skill for everyone, which leads to the increasing interest in developing computational thinking (CT) as early as at the comprehensive school level. Therefore, research is needed to have a common understanding of CT…
Descriptors: Models, Skill Development, Computation, Thinking Skills
Valentina Dagiene; Gintautas Grigas; Tatjana Jevsikova – Informatics in Education, 2024
The work of Niklaus Wirth, designer of the Pascal programming language, has led to the introduction of programming in schools in many countries often leading to a transformation in the way of thinking. In this article, we provide a retrospective analysis of the Lithuanian experience driven by Pascal and discuss the main ideas about teaching…
Descriptors: Programming Languages, Computer Science Education, Foreign Countries, Programming
Sbaraglia, Marco; Lodi, Michael; Martini, Simone – Informatics in Education, 2021
Introductory programming courses (CS1) are difficult for novices. Inspired by "Problem solving followed by instruction" and "Productive Failure" approaches, we define an original "necessity-driven" learning design. Students are put in an apparently well-known situation, but this time they miss an essential ingredient…
Descriptors: Programming, Introductory Courses, Computer Science Education, Programming Languages
Previous Page | Next Page »
Pages: 1 | 2