NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Xuanyan Zhong; Zehui Zhan – Interactive Technology and Smart Education, 2025
Purpose: The purpose of this study is to develop an intelligent tutoring system (ITS) for programming learning based on information tutoring feedback (ITF) to provide real-time guidance and feedback to self-directed learners during programming problem-solving and to improve learners' computational thinking. Design/methodology/approach: By…
Descriptors: Intelligent Tutoring Systems, Computer Science Education, Programming, Independent Study
Peer reviewed Peer reviewed
Direct linkDirect link
Smyrnova-Trybulska, Eugenia; Morze, Nataliia; Kommers, Piet; Zuziak, Wojciech; Gladun, Mariia – Interactive Technology and Smart Education, 2017
Purpose: This paper aims to discuss issues related to science, technology, engineering and mathematics (STEM) education. It is emphasized that the need to prepare students with twenty-first-century skills through STEM-related teaching is strong, especially at the elementary level. The authors present selected previous experiences, publications,…
Descriptors: STEM Education, Teaching Methods, Robotics, Teacher Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Siozou, Stefania; Tselios, Nikolaos; Komis, Vassilis – Interactive Technology and Smart Education, 2008
Purpose: The purpose of this paper is to compare the effect of different representations while teaching basic algorithmic concepts to novice programmers. Design/methodology/approach: A learning activity was designed and mediated with two conceptually different learning environments, each one used by a different group. The first group used the…
Descriptors: Flow Charts, Programming, Longitudinal Studies, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Scarlatos, Lori L. – Interactive Technology and Smart Education, 2006
Educators recognize that group work and physical involvement with learning materials can greatly enhance the understanding and retention of difficult concepts. As a result, math manipulatives--such as pattern blocks and number lines--have increasingly been making their way into classrooms and children's museums. Yet without the constant guidance…
Descriptors: Museums, Mathematical Concepts, Mathematics Instruction, Problem Solving