NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Höppner, Frank – International Educational Data Mining Society, 2021
Various similarity measures for source code have been proposed, many rely on edit- or tree-distance. To support a lecturer in quickly assessing live or online exercises with respect to "approaches taken by the students," we compare source code on a more abstract, semantic level. Even if novice student's solutions follow the same idea,…
Descriptors: Coding, Classification, Programming, Computer Science Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shabrina, Preya; Mostafavi, Behrooz; Tithi, Sutapa Dey; Chi, Min; Barnes, Tiffany – International Educational Data Mining Society, 2023
Problem decomposition into sub-problems or subgoals and recomposition of the solutions to the subgoals into one complete solution is a common strategy to reduce difficulties in structured problem solving. In this study, we use a datadriven graph-mining-based method to decompose historical student solutions of logic-proof problems into Chunks. We…
Descriptors: Intelligent Tutoring Systems, Problem Solving, Graphs, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhi, Rui; Marwan, Samiha; Dong, Yihuan; Lytle, Nicholas; Price, Thomas W.; Barnes, Tiffany – International Educational Data Mining Society, 2019
Viewing worked examples before problem solving has been shown to improve learning efficiency in novice programming. Example-based feedback seeks to present smaller, adaptive worked example steps during problem solving. We present a method for automatically generating and selecting adaptive, example-based programming feedback using historical…
Descriptors: Data Use, Feedback (Response), Novices, Programming
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ma, Yingbo; Katuka, Gloria Ashiya; Celepkolu, Mehmet; Boyer, Kristy Elizabeth – International Educational Data Mining Society, 2022
Collaborative learning is a complex process during which two or more learners exchange opinions, construct shared knowledge, and solve problems together. While engaging in this interactive process, learners' satisfaction toward their partners plays a crucial role in defining the success of the collaboration. If intelligent systems could predict…
Descriptors: Middle School Students, Cooperative Learning, Prediction, Peer Relationship
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Broisin, Julien; Hérouard, Clément – International Educational Data Mining Society, 2019
How to support students in programming learning has been a great research challenge in the last years. To address this challenge, prior works have mainly focused on proposing solutions based on syntactic analysis to provide students with personalized feedback about their grammatical programming errors and misconceptions. However, syntactic…
Descriptors: Semantics, Programming, Syntax, Feedback (Response)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Reilly, Joseph M.; Schneider, Bertrand – International Educational Data Mining Society, 2019
Collaborative problem solving in computer-supported environments is of critical importance to the modern workforce. Coworkers or collaborators must be able to co-create and navigate a shared problem space using discourse and non-verbal cues. Analyzing this discourse can give insights into how consensus is reached and can estimate the depth of…
Descriptors: Problem Solving, Discourse Analysis, Cooperative Learning, Computer Assisted Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lu, Yihan; Hsiao, I-Han – International Educational Data Mining Society, 2016
Online programming discussion forums have grown increasingly and have formed sizable repositories of problem solving-solutions. In this paper, we investigate programming learners' information seeking behaviors from online discussion forums. We design engines to collect students' information seeking processes, including query formulation,…
Descriptors: Programming, Advanced Students, Reading Processes, Computer Mediated Communication
Ezen-Can, Aysu; Boyer, Kristy Elizabeth – International Educational Data Mining Society, 2015
The tremendous effectiveness of intelligent tutoring systems is due in large part to their interactivity. However, when learners are free to choose the extent to which they interact with a tutoring system, not all learners do so actively. This paper examines a study with a natural language tutorial dialogue system for computer science, in which…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Computer Science Education, Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Boyer, Kristy Elizabeth, Ed.; Yudelson, Michael, Ed. – International Educational Data Mining Society, 2018
The 11th International Conference on Educational Data Mining (EDM 2018) is held under the auspices of the International Educational Data Mining Society at the Templeton Landing in Buffalo, New York. This year's EDM conference was highly competitive, with 145 long and short paper submissions. Of these, 23 were accepted as full papers and 37…
Descriptors: Data Collection, Data Analysis, Computer Science Education, Program Proposals