Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 8 |
Descriptor
Source
International Journal of… | 8 |
Author
Aleven, Vincent | 3 |
Koedinger, Kenneth R. | 2 |
McLaren, Bruce M. | 2 |
Sewall, Jonathan | 2 |
Akhuseyinoglu, Kamil | 1 |
Ashley, Kevin D. | 1 |
Biswas, Gautam | 1 |
Brusilovsky, Peter | 1 |
Demi, Sandra | 1 |
Haddawy, Peter | 1 |
Hosseini, Roya | 1 |
More ▼ |
Publication Type
Journal Articles | 8 |
Reports - Research | 7 |
Reports - Descriptive | 1 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 2 |
Postsecondary Education | 2 |
Elementary Secondary Education | 1 |
Audience
Location
Thailand | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Hosseini, Roya; Akhuseyinoglu, Kamil; Brusilovsky, Peter; Malmi, Lauri; Pollari-Malmi, Kerttu; Schunn, Christian; Sirkiä, Teemu – International Journal of Artificial Intelligence in Education, 2020
This research is focused on how to support students' acquisition of program construction skills through worked examples. Although examples have been consistently proven to be valuable for student's learning, the learning technology for computer science education lacks program construction examples with interactive elements that could engage…
Descriptors: Programming, Computer Science Education, Problem Solving, Learner Engagement
Matsuda, Noboru – International Journal of Artificial Intelligence in Education, 2022
This paper demonstrates that a teachable agent (TA) can play a dual role in an online learning environment (OLE) for learning by teaching--the teachable agent working as a synthetic peer for students to learn by teaching and as an interactive tool for cognitive task analysis when authoring an OLE for learning by teaching. We have developed an OLE…
Descriptors: Artificial Intelligence, Teaching Methods, Intelligent Tutoring Systems, Feedback (Response)
Jennings, Jay; Muldner, Kasia – International Journal of Artificial Intelligence in Education, 2021
When students are first learning to program, they not only have to learn to write programs, but also how to trace them. Code tracing involves stepping through a program step-by-step, which helps to predict the output of the program and identify bugs. Students routinely struggle with this activity, as evidenced by prior work and our own experiences…
Descriptors: Scaffolding (Teaching Technique), Tutors, Tutoring, Programming
Hutchins, Nicole M.; Biswas, Gautam; Zhang, Ningyu; Snyder, Caitlin; Lédeczi, Ákos; Maróti, Miklós – International Journal of Artificial Intelligence in Education, 2020
Driven by our technologically advanced workplaces and the surge in demand for proficiency in the computing disciplines, it is becoming imperative to provide computational thinking (CT) opportunities to all students. One approach for making computing accessible and relevant to learning and problem-solving in K-12 environments is to integrate it…
Descriptors: Computer Assisted Instruction, Problem Solving, Computation, Thinking Skills
Aleven, Vincent; McLaren, Bruce M.; Sewall, Jonathan; van Velsen, Martin; Popescu, Octav; Demi, Sandra; Ringenberg, Michael; Koedinger, Kenneth R. – International Journal of Artificial Intelligence in Education, 2016
In 2009, we reported on a new Intelligent Tutoring Systems (ITS) technology, example-tracing tutors, that can be built without programming using the Cognitive Tutor Authoring Tools (CTAT). Creating example-tracing tutors was shown to be 4-8 times as cost-effective as estimates for ITS development from the literature. Since 2009, CTAT and its…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Programming, Educational Technology
Lynch, Collin; Ashley, Kevin D.; Pinkwart, Niels; Aleven, Vincent – International Journal of Artificial Intelligence in Education, 2009
In this paper we consider prior definitions of the terms "ill-defined domain" and "ill-defined problem". We then present alternate definitions that better support research at the intersection of Artificial Intelligence and Education. In our view both problems and domains are ill-defined when essential concepts, relations, or criteria are un- or…
Descriptors: Definitions, Artificial Intelligence, Problem Solving, Educational Research
Aleven, Vincent; McLaren, Bruce M.; Sewall, Jonathan; Koedinger, Kenneth R. – International Journal of Artificial Intelligence in Education, 2009
The Cognitive Tutor Authoring Tools (CTAT) support creation of a novel type of tutors called example-tracing tutors. Unlike other types of ITSs (e.g., model-tracing tutors, constraint-based tutors), example-tracing tutors evaluate student behavior by flexibly comparing it against generalized examples of problem-solving behavior. Example-tracing…
Descriptors: Feedback (Response), Student Behavior, Intelligent Tutoring Systems, Problem Solving
Kazi, Hameedullah; Haddawy, Peter; Suebnukarn, Siriwan – International Journal of Artificial Intelligence in Education, 2009
In well-defined domains such as Physics, Mathematics, and Chemistry, solutions to a posed problem can objectively be classified as correct or incorrect. In ill-defined domains such as medicine, the classification of solutions to a patient problem as correct or incorrect is much more complex. Typical tutoring systems accept only a small set of…
Descriptors: Foreign Countries, Problem Based Learning, Problem Solving, Correlation