NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Physics Education50
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 50 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Grebenev, I. V.; Kazarin, P. V. – Physics Education, 2022
The article describes a methodology for studying Fresnel diffraction with the active involvement of students in discussing the results of a demonstration experiment. To create a clearly visible model of Fresnel zones, a centimeter radio wave range was chosen, in which the first zone is about 10 cm in size. This makes visible the created…
Descriptors: Physics, Science Instruction, Teaching Methods, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Özdemir, Erdogan; Coramik, Mustafa – Physics Education, 2022
It is often necessary to enrich the teaching environment in order for students to learn optics in depth and to interpret the real optical situations with the information they have learned. In this study, a virtual teaching environment was developed using by Algodoo, a 2D simulation software. An eye model was created in order to explain the…
Descriptors: Light, Physics, Teaching Methods, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Joseph, Toby – Physics Education, 2021
Problems involving rotating systems analysed from an inertial frame, without invoking fictitious forces, is something that freshman students find difficult to understand in an introductory mechanics course. In this article we try to see what could be the factors that lead to this difficulty and propose a set of arguments that could be used to…
Descriptors: Mechanics (Physics), Motion, Scientific Concepts, Introductory Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Gojkovic, Ljubomir; Malijevic, Stefan; Armakovic, Stevan – Physics Education, 2020
In this work three examples of textbook circuits (resistor-capacitor, resistor-inductor and resistor-inductor-capacitor) have been modeled by employing the Euler method for the approximate solution of differential equations using algorithms implemented in the "Python" programming language. The aim of this work was to demonstrate how…
Descriptors: Science Instruction, Programming Languages, Teaching Methods, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Sharifov, Galib Movsum oghlu – Physics Education, 2020
This article analyses the impact of the role and significance of the virtual laboratory on ninth-grade lyceum students' attainment of more-in depth scientific knowledge and improved practical skills in the physics topic area of electromagnetism. Pedagogical experiments were conducted at the Baku European Lyceum. The results show that the virtual…
Descriptors: Virtual Classrooms, Science Laboratories, Problem Solving, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Atkin, Keith – Physics Education, 2020
In this paper it is demonstrated how the free, and easily downloadable, software package called SMath Studio can be used to set up a model of alpha-particle scattering. The basic physics of the motion of an alpha-particle in the nuclear coulomb field is used to produce a simple stepwise computer algorithm which, in conjunction with a novel set of…
Descriptors: Computer Software, Physics, Science Instruction, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Pendrill, Ann-Marie – Physics Education, 2020
Students often use incoherent strategies in their problem solving involving force and motion, as revealed, e.g. when they are asked to draw force diagrams for amusement rides involving circular motion, whether in horizontal or vertical planes. Depending on the questions asked, assignments involving circular motion can reveal different types of…
Descriptors: Science Instruction, Physics, Motion, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Chaudhuri, S. – Physics Education, 2019
In this paper, we derive an equation for the distance covered by a free-falling body as a function of time valid for any arbitrary distance. The equation, interestingly, yields exactly the time according to the Kepler's third law in the limiting case of very large distance compared to the radius of the Earth. The equation, of course, reduces to…
Descriptors: Physics, Science Instruction, Earth Science, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Balta, Nuri – Physics Education, 2018
One way to ease the solution of physics problems is to visualize the situation. However, by visualization we do not mean the pictorial representation of the problem. Instead, we mean a sketch for the solution of the problem. In this paper a new approach to solving physics problems, based on decomposing the problem into with and without gravity, is…
Descriptors: Physics, Visualization, Science Instruction, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Follows, Mike – Physics Education, 2018
The 1969 version of "The Italian Job" is used as context for teaching turning forces and introducing or enhancing the understanding of equilibrium and Newton's Third Law of Motion. A Harrington Legionnaire coach is used as the getaway vehicle for a gold heist and the film ends on a genuine cliffhanger, with the rear half of the coach…
Descriptors: Physics, Science Instruction, Teaching Methods, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Sokolowski, Andrzej – Physics Education, 2021
Analysing graphs, formulating covariational relationships, and hypothesizing systems' behaviour have emerged as frequent objectives of contemporary research in physics education. As such, these studies aim to help students achieve these objectives. While a consensus has been reached on the cognitive benefits of emphasizing the structural domain of…
Descriptors: Graphs, Energy, Physics, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Pendrill, Ann-Marie; Eriksson, Moa; Eriksson, Urban; Svensson, Kim; Ouattara, Lassana – Physics Education, 2019
Describing the motion in a vertical roller coaster loop requires a good understanding of Newton's laws, vectors and energy transformation. This paper describes how first-year students try to make sense of force and acceleration in this example of non-uniform circular motion, which was part of a written exam. In addition to an analysis of the exam…
Descriptors: Motion, Science Instruction, College Freshmen, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Korsun, Igor – Physics Education, 2019
This article is aimed at justifying sensible use of inventive tasks in physics teaching. The justification will encourage teachers to form learners' creative thinking; in particular, the course of physics has the great potential for forming learners' creative thinking. Being adapted to the course of physics, the basic stages to solve inventive…
Descriptors: Science Interests, Physics, Science Instruction, Creative Thinking
Peer reviewed Peer reviewed
Direct linkDirect link
Wheaton, S. M.; Binder, P.-M. – Physics Education, 2017
We discuss strategies for the general solution of single-step 1D constant acceleration problems. In a slightly restricted form, these problems have five variables (?"x," "v[subscript 0]," "v," "a" and "t") and two independent equations, so three variables must be given to solve for the other two,…
Descriptors: Motion, Problem Solving, Physics, Equations (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Hut, R. W.; Pols, C. F. J.; Verschuur, D. J. – Physics Education, 2020
Teaching a hands- and minds-on course, in which feedback is essential in order to learn, is difficult, especially in times of COVID-19 where student progression cannot be monitored directly. During the lockdown period, the workshops of an undergraduate Design Engineering course had to be transferred to the home situation, which required a redesign…
Descriptors: Physics, Hands on Science, Workshops, Teaching Methods
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4