Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 24 |
Since 2006 (last 20 years) | 37 |
Descriptor
Source
Technology and Engineering… | 37 |
Author
Bartholomew, Scott R. | 4 |
Hughes, Andrew J. | 3 |
Merrill, Chris | 3 |
Roman, Harry T. | 3 |
Asunda, Paul A. | 2 |
Ernst, Jeremy V. | 2 |
Loveland, Thomas | 2 |
Mativo, John | 2 |
Mitts, Charles R. | 2 |
Strimel, Greg | 2 |
Strimel, Greg J. | 2 |
More ▼ |
Publication Type
Journal Articles | 37 |
Reports - Descriptive | 36 |
Guides - Classroom - Teacher | 2 |
Reports - Research | 1 |
Education Level
Audience
Teachers | 10 |
Location
Colorado | 1 |
Massachusetts | 1 |
New Jersey | 1 |
North Carolina | 1 |
Ohio | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of… | 1 |
What Works Clearinghouse Rating
Andrew J. Hughes – Technology and Engineering Teacher, 2022
The intention of this article is to provide Technology and Engineering Educators (T&EEs) with a more thorough understanding of implementing the product realization process (PRP) to help manage the design and development processes in their classrooms. The product realization process (PRP) innately involves a practical combination of knowledge,…
Descriptors: Engineering Education, Design, High School Students, Skill Development
Han, Jung; Park, Hyeong Kyun; Kelley, Todd R. – Technology and Engineering Teacher, 2023
Engineering design has been central to technology education. Currently, online collaborative platforms for designers are widely used as digital forms of an engineer's notebook. However, traditional forms are still valued as the medium of engineering design during the conceptual phase of design since a paper notebook and pen or pencil allow…
Descriptors: Engineering Education, Notetaking, Design, Creative Thinking
Hughes, Andrew J.; Merrill, Chris – Technology and Engineering Teacher, 2021
Technology and Engineering Education (T&EE) includes "engineering design challenges" to establish a connection to designing and problem-solving indicative of being an Engineer. Engineering design challenges involving bridges (or towers) have been a common feature of the discipline. These bridge design challenges ask students to…
Descriptors: Design, Engineering Education, Teaching Methods, Problem Solving
Mitts, Charles R. – Technology and Engineering Teacher, 2016
The International Technology and Engineering Educators Association (ITEEA) defines STEM as a new transdisciplinary subject in schools that integrates the disciplines of science, technology, engineering, and mathematics into a single course of study. There are three major problems with this definition: There is no consensus in support of the ITEEA…
Descriptors: STEM Education, Technology Education, Engineering Education, Intellectual Disciplines
Swinson, Ronnie; Clark, Aaron C.; Ernst, Jeremy V.; Sutton, Kevin – Technology and Engineering Teacher, 2016
Today's engineers, designers, and technologists are often thrust into the role of problem solver, from the initial design phase of a product or process all the way to final development. Many engineers in manufacturing environments are tasked with solving problems and continuously improving processes to enhance company profitability, efficiency,…
Descriptors: Technology Education, Engineering Education, Simulation, Problem Solving
Hughes, Andrew J.; Merrill, Chris – Technology and Engineering Teacher, 2020
The basic concepts inherent to statics, including unbalanced and balanced forces and instability and stability of physical systems, have traditionally been covered in middle and high school physical science courses (Physical Science as indicated in "Next Generation Science Standards"). Yet, these concepts are covered using a physical…
Descriptors: Technology Education, Engineering Education, Transfer of Training, Theory Practice Relationship
Hughes, Andrew J.; Merrill, Chris – Technology and Engineering Teacher, 2020
As the authors are proponents for engineering education that is done well, they have provided an explanation of truss design using the Method of Joints that combines the application of practical hands-on learning with sound mathematical and scientific theory. The Method of Joints will allow students to design trusses to meet specified criteria…
Descriptors: Engineering Education, Structural Elements (Construction), Experiential Learning, Mathematical Models
Bartholomew, Scott; Strimel, Greg; Byrd, Vetria; Santana, Vanessa; Otto, Jackson; Laureano, Zach; DeRome, Brian – Technology and Engineering Teacher, 2020
By exposing students to the concept of digital agriculture earlier in their lives, they will be able to develop the proper mindset to advance the field further when they enter the professional world. Engaging students in activities such as the one described here, which center on the Grand Engineering Challenges and socially relevant contexts, may…
Descriptors: Data Use, Agriculture, Agricultural Occupations, Agricultural Production
Preble, Brian C. – Technology and Engineering Teacher, 2018
The two-stroke engine is an engineering marvel that has been incorporated into many aspects of modern-day life. While many seek to eliminate the two-stroke, others seek to revive this simple and effective power plant, aiming to make it more environmentally friendly and fuel-efficient. If successful, improvements could be far-reaching and…
Descriptors: Technological Literacy, Engines, Hands on Science, Engineering
Bartholomew, Scott R.; Ruesch, Emily Yoshikawa – Technology and Engineering Teacher, 2018
Research has shown that once a potential solution to a problem has settled into one's mind, it can be difficult to break from the original idea and move in a different direction (Cardoso & BadkeSchaub, 2009; Jansson & Smith, 1991). When designers are given examples (whether as models, photographs, sketches, or drawings), they often fixate…
Descriptors: Design, Creative Thinking, Creativity, Problem Solving
Moon, Cameron; Bartholomew, Scott R.; Weitlauf, John – Technology and Engineering Teacher, 2019
This article describes a lesson in which students will utilize ideation and engineering design to innovate a solution to a design problem using common household products.
Descriptors: Engineering, Design, Innovation, Concept Formation
Loveland, Thomas – Technology and Engineering Teacher, 2019
In order to be prepared for future college or careers, 21st century students should have critical thinking in their arsenal of soft skills. Most teachers and schools feel that critical thinking skills are important to teach, but unfortunately they have a lack of understanding of what critical thinking is and what strategies are best utilized to…
Descriptors: Technology Education, Engineering Education, Personal Autonomy, 21st Century Skills
Prasa, Anthony R., Jr.; Del Guercio, Ryan – Technology and Engineering Teacher, 2016
Engineers are faced with solving important problems every day and must follow a step-by-step design process to arrive at solutions. Students who are taught an effective design process to apply to engineering projects begin to see problems as an engineer would, consider all ideas, and arrive at the best solution. Using an effective design process…
Descriptors: Engineering Education, Engineering, Secondary School Science, High School Students
Kim, Eunhye; Newman, Christine; Lastova, Mark; Bosman, Timothy; Strimel, Greg J. – Technology and Engineering Teacher, 2018
This article presents a culturally situated and socially relevant lesson for intentionally teaching secondary students the fundamental engineering concepts related to Problem Framing and Project Management. This lesson includes: (1) class discussions to engage students in a socially relevant problem (food waste and sustainability) within a…
Descriptors: Secondary School Students, Social Problems, Food, Problem Solving
Sung, Euisuk – Technology and Engineering Teacher, 2019
Computational thinking has been popularized in the last decade, particularly with the emphasis on coding education in K-12 schools. The core idea of computational thinking has a close relationship with technology and engineering education (TEE). TEE has emphasized the use of computing skills to solve problems, and integrative STEM education…
Descriptors: Skill Development, Computation, STEM Education, Engineering