NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 158 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Gjerde, Vegard; Paulsen, Vegard Havre; Holst, Bodil; Kolstø, Stein Dankert – Physical Review Physics Education Research, 2022
Self-explanation, a learning strategy where students explain to themselves the steps taken in a worked example, is an effective learning strategy in early cognitive skill acquisition. However, many physics students produce self-explanations of low quality. There is also a lack of guidelines for what students should seek to explain when studying…
Descriptors: Problem Solving, Physics, Recall (Psychology), Learning Strategies
Peer reviewed Peer reviewed
Direct linkDirect link
Elina Palmgren; Tapio Rasa – Science & Education, 2024
Modelling roles of mathematics in physics has proved to be a difficult task, with previous models of the interplay between the two disciplines mainly focusing on mathematical modelling and problem solving. However, to convey a realistic view of physics as a field of science to our students, we need to do more than train them to become fluent in…
Descriptors: Physics, Mathematical Models, Science Instruction, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Pendrill, Ann-Marie – Physics Education, 2020
Students often use incoherent strategies in their problem solving involving force and motion, as revealed, e.g. when they are asked to draw force diagrams for amusement rides involving circular motion, whether in horizontal or vertical planes. Depending on the questions asked, assignments involving circular motion can reveal different types of…
Descriptors: Science Instruction, Physics, Motion, Scientific Concepts
Stehle, Stephanie M. – ProQuest LLC, 2022
Students come to their high school physics classroom with experiences and knowledge that can be used to help explain physics concepts, but those experiences may not fully align with the scientifically accepted science concept. When there is a misalignment between a student's prior knowledge and the scientifically accepted concept a misconception…
Descriptors: High School Students, Physics, Metacognition, Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Costu, Fatma – Journal of Baltic Science Education, 2023
Several studies compared three different types of questions (conceptual, algorithmic, and graphical) across various topics, however, few focused specifically on gifted students. This study addressed this gap. The aim of the study, hence, was to determine whether there were notable differences in gifted students' performance in the three types of…
Descriptors: Academically Gifted, Concept Formation, Algorithms, Graphs
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Budimaier, Florian; Hopf, Martin – Journal of Baltic Science Education, 2022
Research on students' thinking about the particulate nature of matter has shown that students find it difficult to connect the macroscopic with the sub microscopic world. Although they have heard about atoms, students stay within a continuous model of matter or attribute macroscopic properties to particles. The research presented focuses on the…
Descriptors: Student Attitudes, Science Experiments, Scientific Concepts, Cognitive Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Bancong, Hartono; Song, Jinwoong – Science & Education, 2020
Thought experiments are personal and tacit processes of experimentation that scientists perform within their own imagery in formulating new theories or refuting existing theories. However, by viewing learning as a social process, this study aims to show that thought experiments can also be constructed collaboratively and to present a detailed…
Descriptors: Cooperative Learning, Cognitive Processes, Physics, Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Eryilmaz-Toksoy, Seyhan – Journal of Theoretical Educational Science, 2022
In this research, it was aimed to analyze the problem solving strategies used during solving problems related to constant speed and constant acceleration motion, which are often used in graphs, according to the presentation of the problem (text and graph). The research was carried out with 119 students studying in the 11th grade. In the research…
Descriptors: Motion, Problem Solving, Scientific Concepts, Secondary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
Modir, Bahar; Thompson, John D.; Sayre, Eleanor C. – Physical Review Physics Education Research, 2019
Students' difficulties in quantum mechanics may be the result of unproductive framing rather than a fundamental inability to solve the problems or misconceptions about physics content. Using the theoretical lens of epistemological framing, we applied previously developed frames to seek an underlying structure to the long lists of published…
Descriptors: Quantum Mechanics, Mechanics (Physics), Concept Formation, Misconceptions
Peer reviewed Peer reviewed
Direct linkDirect link
Musa Adekunle Ayanwale; Jamiu Oluwadamilare Amusa; Adekunle Ibrahim Oladejo; Funmilayo Ayedun – Interchange: A Quarterly Review of Education, 2024
The study focuses on assessing the proficiency levels of higher education students, specifically the physics achievement test (PHY 101) at the National Open University of Nigeria (NOUN). This test, like others, evaluates various aspects of knowledge and skills simultaneously. However, relying on traditional models for such tests can result in…
Descriptors: Item Response Theory, Difficulty Level, Item Analysis, Test Items
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Álvarez, Vanessa; Torres, Tarcilo; Gangoso, Zulma; Sanjosé, Vicente – Journal of Baltic Science Education, 2020
In physics and chemistry, the development of problem-solving skills is necessary to become an expert. A simple cognitive model to analyse such development is proposed and tested. An exploratory research was conducted with expert professors and students in initial and advanced years. A think aloud procedure was used to obtain relevant data while…
Descriptors: Physics, Chemistry, Science Instruction, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Balta, Nuri; Japashov, Nursultan; Abdulbakioglu, Mustafa; Oliveira, Alandeom W. – Physics Education, 2020
Student cognition in response to intuitive and counterintuitive stimuli in the school science curriculum is not well understood. To address this issue, this study examines high school students' cognitive responses to three counterintuitive physics problems. Our analysis reveals that student success in arriving at counter-intuitive physical…
Descriptors: High School Students, Science Instruction, Secondary School Science, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Frensley, John – Physics Teacher, 2019
Traditional high school physics instruction often comes across as a mere extension of the mathematics classroom to many of our students. Solving numerical physics problems using structures such as the GUESS method (given, unknown, equation, substitute, solve) doesn't help students with conceptual understanding. With the advent of physics education…
Descriptors: High School Students, Secondary School Science, Physics, Science Process Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Casalvieri, Christian; Gambini, Alessandro – International Journal for Technology in Mathematics Education, 2022
In this paper we present a qualitative analysis based on data collected by means of an eye-tracker tool, concerning the outcome of a mathematical analysis question administered to a group of candidates of university level or higher. One of the research aims is to highlight similarities and differences in the visual observation of the question…
Descriptors: Eye Movements, Cognitive Processes, Mathematics Education, Higher Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rokhmat, Joni; Marzuki; Wahyudi; Putrie, Syandy Dwirahayu – Journal of Turkish Science Education, 2019
Unlike general approaches to learning, the Causalitic-Thinking Approach, aims to construct phenomena that have more than one possible answer. However this approach requires scaffolding strategies. This study aims to investigate the strategy of developing scaffolding in learning with the Causalitic-Thinking Approach to increase students'…
Descriptors: Foreign Countries, Physics, Science Instruction, Secondary School Science
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11