NotesFAQContact Us
Collection
Advanced
Search Tips
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 21 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Qiang Fu; Li Liu; Guofu Wang; Jing Yu; Shiyuan Fu – Journal of Chemical Education, 2023
Commonly used methods to simulate the oxidation-reduction (redox) titration curves include the three-step method and the rigorous method. The simple three-step method simulates the redox titration curve with the assumption that the reaction is complete, which is widely used in undergraduate quantitative analysis courses. For the rigorous…
Descriptors: Chemistry, Simulation, College Science, Undergraduate Students
Peer reviewed Peer reviewed
Still, Ebbe; Sara, Rolf – Journal of Chemical Education, 1977
Presents compact algorithms, suitable for use with hand held calculators, for the calculation of potentiometric titration curves. (SL)
Descriptors: Algorithms, Calculators, Chemical Reactions, Chemistry
Peer reviewed Peer reviewed
Knudson, George E.; Nimrod, Dale – Journal of Chemical Education, 1977
Presents an exact equation for calculating the volume of titrant as a function of the hydrogen ion concentration suitable for calculation on a hand held calculator. (SL)
Descriptors: Algorithms, Calculators, Chemical Reactions, Chemistry
Peer reviewed Peer reviewed
Stencel, John E. – Journal of College Science Teaching, 1992
Explains how a simple three-step algorithm can aid college students in solving synapse transmission problems. Reports that all of the students did not completely understand the algorithm. However, many learn a simple working model of synaptic transmission and understand why an impulse will pass across a synapse quantitatively. Students also see…
Descriptors: Algorithms, Anatomy, Biology, College Science
Peer reviewed Peer reviewed
Frank, David V.; And Others – Journal of Chemical Education, 1987
Discusses the differences between problems and exercises in chemistry, and some of the difficulties that arise when the same methods are used to solve both. Proposes that algorithms are excellent models for solving exercises. Argues that algorithms not be used for solving problems. (TW)
Descriptors: Algorithms, Chemistry, College Science, Higher Education
Peer reviewed Peer reviewed
Middlecamp, Catherine; Kean, Elizabeth – Journal of Chemical Education, 1987
Discusses the difference between a generic chemistry problem (one which can be solved using an algorithm) and a harder chemistry problem (one for which there is no algorithm). Encourages teachers to help students recognize these categories of problems so they will be better able to find solutions. (TW)
Descriptors: Algorithms, Chemistry, College Science, Higher Education
Peer reviewed Peer reviewed
Schrader, C. L. – Journal of Chemical Education, 1987
Discusses the differences between problems and exercises, the levels of thinking required to solve them, and the roles that algorithms can play in helping chemistry students perform these tasks. Proposes that students be taught the logic of algorithms, their characteristics, and how to invent their own algorithms. (TW)
Descriptors: Algorithms, Chemistry, College Science, Higher Education
Peer reviewed Peer reviewed
Sommerfeld, Jude T. – Chemical Engineering Education, 1986
Summarizes a simple design algorithm which identifies nested loops of equations which must be solved by trial-and-error methods. The algorithm is designed to minimize such loops, provides guidance to the selection of variables, and delineates the order in which systems of equations are to be solved. Examples are included. (TW)
Descriptors: Algorithms, Chemical Engineering, College Mathematics, College Science
Peer reviewed Peer reviewed
Carter, Carolyn S.; And Others – Journal of Research in Science Teaching, 1987
Reports on a study in which two spatial tests were given to science and engineering majors and to students in nursing and agriculture at Purdue University (Indiana). Scores from the tests consistently contributed a small but significant amount of success on measures of performance in chemistry. (TW)
Descriptors: Academic Achievement, Agricultural Education, Algorithms, Chemistry
Peer reviewed Peer reviewed
Nussbaum, Francis, Jr. – American Biology Teacher, 1988
Presents an algorithm for solving problems related to multiple allelic frequencies in populations at equilibrium. Considers sample problems and provides their solution using this tabular algorithm. (CW)
Descriptors: Algorithms, Biological Sciences, College Science, Genetics
Peer reviewed Peer reviewed
Hoggard, Franklin R. – Journal of Chemical Education, 1987
Suggests a method for solving verbal problems in chemistry using a linguistic algorithm that is partly adapted from two artificial intelligence languages. Provides examples of problems solved using the mental concepts of translation, rotation, mirror image symmetry, superpositioning, disjoininng, and conjoining. (TW)
Descriptors: Algorithms, Artificial Intelligence, Chemical Nomenclature, Chemical Reactions
Peer reviewed Peer reviewed
Pribyl, Jeffrey R.; Bodner, George M. – Journal of Research in Science Teaching, 1987
Reports on a study which examined the relationship between spatial ability and performance in organic chemistry. Results indicated that students with high spatial scores did significantly better on questions requiring problem solving skills, as well as on those requiring the mental manipulation of two-dimensional representations of a molecule. (TW)
Descriptors: Academic Achievement, Algorithms, Chemical Reactions, College Science
Peer reviewed Peer reviewed
Joye, Donald D.; Koko, F. William Jr. – Chemical Engineering Education, 1988
Presents a new method to teach the subject of evaporators which is both simple enough to use in the classroom and accurate and flexible enough to be used as a design tool in practice. Gives an example using a triple evaporator series. Analyzes the effect of this method. (CW)
Descriptors: Algorithms, Chemical Engineering, Chemistry, College Science
Peer reviewed Peer reviewed
Kean, Elizabeth; And Others – Journal of Chemical Education, 1988
Describes teaching strategies that help students improve problem solving skills. Lists three factors good problem solvers were found to possess. Gives step by step instructions for solving problems. (MVL)
Descriptors: Algorithms, Chemistry, College Science, Heuristics
Peer reviewed Peer reviewed
Bodner, George M. – Journal of Chemical Education, 1987
Differentiates between problems, exercises and algorithms. Discusses the role of algorithms in solving problems and exercises in chemistry. Suggests that very real differences exist between solving problems and exercises, and that problem solving steps can be and should be taught in chemistry education. (TW)
Descriptors: Algorithms, Chemistry, College Science, Higher Education
Previous Page | Next Page ยป
Pages: 1  |  2