Publication Date
In 2025 | 1 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 18 |
Since 2006 (last 20 years) | 25 |
Descriptor
Computer Science Education | 25 |
Intelligent Tutoring Systems | 25 |
Problem Solving | 25 |
Foreign Countries | 10 |
Programming | 10 |
Teaching Methods | 10 |
College Students | 8 |
Computer Software | 7 |
Models | 7 |
Student Attitudes | 7 |
Artificial Intelligence | 6 |
More ▼ |
Source
Author
Barnes, Tiffany | 2 |
Boyer, Kristy Elizabeth | 2 |
Di Eugenio, Barbara | 2 |
Fathi, Moein | 2 |
Hooshyar, Danial | 2 |
Lim, Heuiseok | 2 |
Mostafavi, Behrooz | 2 |
Yousefi, Moslem | 2 |
Aggarwal, Vaibhav | 1 |
Ahmad, Rodina Binti | 1 |
Akter, Rokaya | 1 |
More ▼ |
Publication Type
Journal Articles | 17 |
Reports - Research | 16 |
Collected Works - Proceedings | 4 |
Reports - Descriptive | 4 |
Speeches/Meeting Papers | 3 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Brazil | 3 |
China | 3 |
Germany | 2 |
Uruguay | 2 |
Australia | 1 |
Costa Rica | 1 |
Croatia | 1 |
France | 1 |
India | 1 |
Malaysia | 1 |
North Carolina | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Rosenberg Self Esteem Scale | 1 |
What Works Clearinghouse Rating
Wiegand, R. Paul; Bucci, Anthony; Kumar, Amruth N.; Albert, Jennifer; Gaspar, Alessio – ACM Transactions on Computing Education, 2022
In this article, we leverage ideas from the theory of coevolutionary computation to analyze interactions of students with problems. We introduce the idea of "informatively" easy or hard concepts. Our approach is different from more traditional analyses of problem difficulty such as item analysis in the sense that we consider Pareto…
Descriptors: Concept Formation, Difficulty Level, Computer Science Education, Problem Solving
Guozhu Ding; Xiangyi Shi; Shan Li – Education and Information Technologies, 2024
In this study, we developed a classification system of programming errors based on the historical data of 680,540 programming records collected on the Online Judge platform. The classification system described six types of programming errors (i.e., syntax, logical, type, writing, misunderstanding, and runtime errors) and their connections with…
Descriptors: Programming, Computer Science Education, Classification, Graphs
Shabrina, Preya; Mostafavi, Behrooz; Tithi, Sutapa Dey; Chi, Min; Barnes, Tiffany – International Educational Data Mining Society, 2023
Problem decomposition into sub-problems or subgoals and recomposition of the solutions to the subgoals into one complete solution is a common strategy to reduce difficulties in structured problem solving. In this study, we use a datadriven graph-mining-based method to decompose historical student solutions of logic-proof problems into Chunks. We…
Descriptors: Intelligent Tutoring Systems, Problem Solving, Graphs, Data Analysis
Xuanyan Zhong; Zehui Zhan – Interactive Technology and Smart Education, 2025
Purpose: The purpose of this study is to develop an intelligent tutoring system (ITS) for programming learning based on information tutoring feedback (ITF) to provide real-time guidance and feedback to self-directed learners during programming problem-solving and to improve learners' computational thinking. Design/methodology/approach: By…
Descriptors: Intelligent Tutoring Systems, Computer Science Education, Programming, Independent Study
Quadir, Benazir; Mostafa, Kazi; Yang, Jie Chi; Shen, Juming; Akter, Rokaya – Education and Information Technologies, 2023
This study used the ARCS approach to investigate the effects of university students' motivation, including attention, relevance, confidence, and satisfaction, to use the Programming Teaching Assistant (PTA) on their Programming Problem-Solving Skills (PPSS). Previous studies have shown that PTA features enhance learners' programming performance,…
Descriptors: Programming Languages, Computer Science Education, Problem Solving, Student Motivation
Haglund, Pontus; Strömbäck, Filip; Mannila, Linda – Informatics in Education, 2021
Controlling complexity through the use of abstractions is a critical part of problem solving in programming. Thus, becoming proficient with procedural and data abstraction through the use of user-defined functions is important. Properly using functions for abstraction involves a number of other core concepts, such as parameter passing, scope and…
Descriptors: Computer Science Education, Programming, Programming Languages, Problem Solving
Behera, Ardhendu; Matthew, Peter; Keidel, Alexander; Vangorp, Peter; Fang, Hui; Canning, Susan – International Journal of Artificial Intelligence in Education, 2020
Learning involves a substantial amount of cognitive, social and emotional states. Therefore, recognizing and understanding these states in the context of learning is key in designing informed interventions and addressing the needs of the individual student to provide personalized education. In this paper, we explore the automatic detection of…
Descriptors: Nonverbal Communication, Intelligent Tutoring Systems, Eye Movements, Learning Processes
Broisin, Julien; Hérouard, Clément – International Educational Data Mining Society, 2019
How to support students in programming learning has been a great research challenge in the last years. To address this challenge, prior works have mainly focused on proposing solutions based on syntactic analysis to provide students with personalized feedback about their grammatical programming errors and misconceptions. However, syntactic…
Descriptors: Semantics, Programming, Syntax, Feedback (Response)
Howard, Cynthia; Jordan, Pamela; Di Eugenio, Barbara; Katz, Sandra – International Journal of Artificial Intelligence in Education, 2017
Despite a growing need for educational tools that support students at the earliest phases of undergraduate Computer Science (CS) curricula, relatively few such tools exist--the majority being Intelligent Tutoring Systems. Since peer interactions more readily give rise to challenges and negotiations, another way in which students can become more…
Descriptors: Computer Science Education, Undergraduate Study, Intelligent Tutoring Systems, Artificial Intelligence
Hooshyar, Danial; Binti Ahmad, Rodina; Wang, Minhong; Yousefi, Moslem; Fathi, Moein; Lim, Heuiseok – Journal of Educational Computing Research, 2018
Games with educational purposes usually follow a computer-assisted instruction concept that is predefined and rigid, offering no adaptability to each student. To overcome such problem, some ideas from Intelligent Tutoring Systems have been used in educational games such as teaching introductory programming. The objective of this study was to…
Descriptors: Intelligent Tutoring Systems, Teaching Methods, Introductory Courses, Programming
de Oliveira Costa Machado, Marcelo; Barrére, Eduardo; Souza, Jairo – International Journal of Distance Education Technologies, 2019
Adaptive curriculum sequencing (ACS) is still a challenge in the adaptive learning field. ACS is a NP-hard problem especially considering the several constraints of the student and the learning material when selecting a sequence from repositories where several sequences could be chosen. Therefore, this has stimulated several researchers to use…
Descriptors: Sequential Approach, Intelligent Tutoring Systems, Mathematics, Problem Solving
Mostafavi, Behrooz; Barnes, Tiffany – International Journal of Artificial Intelligence in Education, 2017
Deductive logic is essential to a complete understanding of computer science concepts, and is thus fundamental to computer science education. Intelligent tutoring systems with individualized instruction have been shown to increase learning gains. We seek to improve the way deductive logic is taught in computer science by developing an intelligent,…
Descriptors: Artificial Intelligence, Problem Solving, Educational Technology, Technology Uses in Education
Wiggins, Joseph B.; Grafsgaard, Joseph F.; Boyer, Kristy Elizabeth; Wiebe, Eric N.; Lester, James C. – International Journal of Artificial Intelligence in Education, 2017
In recent years, significant advances have been made in intelligent tutoring systems, and these advances hold great promise for adaptively supporting computer science (CS) learning. In particular, tutorial dialogue systems that engage students in natural language dialogue can create rich, adaptive interactions. A promising approach to increasing…
Descriptors: Intelligent Tutoring Systems, Self Efficacy, Computer Science Education, Dialogs (Language)
Lavbic, Dejan; Matek, Tadej; Zrnec, Aljaž – Interactive Learning Environments, 2017
Today's software industry requires individuals who are proficient in as many programming languages as possible. Structured query language (SQL), as an adopted standard, is no exception, as it is the most widely used query language to retrieve and manipulate data. However, the process of learning SQL turns out to be challenging. The need for a…
Descriptors: Evaluation Methods, Information Systems, Intelligent Tutoring Systems, Computer Science Education
Fossati, Davide; Di Eugenio, Barbara; Ohlsson, Stellan; Brown, Christopher; Chen, Lin – Technology, Instruction, Cognition and Learning, 2015
Based on our empirical studies of effective human tutoring, we developed an Intelligent Tutoring System, iList, that helps students learn linked lists, a challenging topic in Computer Science education. The iList system can provide several forms of feedback to students. Feedback is automatically generated thanks to a Procedural Knowledge Model…
Descriptors: Intelligent Tutoring Systems, Computer Science Education, Feedback (Response), Information Retrieval
Previous Page | Next Page »
Pages: 1 | 2