NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 18 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Donoghue, Thomas; Voytek, Bradley; Ellis, Shannon E. – Journal of Statistics and Data Science Education, 2021
Nolan and Temple Lang's "Computing in the Statistics Curricula" (2010) advocated for a shift in statistical education to broadly include computing. In the time since, individuals with training in both computing and statistics have become increasingly employable in the burgeoning data science field. In response, universities have…
Descriptors: Statistics Education, Teaching Methods, Computation, Curriculum Design
Peer reviewed Peer reviewed
Direct linkDirect link
Tan, Verily; Nicholas, Celeste; Scribner, J. Adam; Francis, Dionne Cross – Technology and Engineering Teacher, 2019
With the introduction of "Next Generation Science Standards" ("NGSS"), teachers have been called to find meaningful and engaging ways to teach science content while incorporating engineering practices and, to a lesser extent, computing and computational thinking. The task becomes even more complex when they also have to…
Descriptors: Interdisciplinary Approach, Teaching Methods, Standards, Science Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hanyak, Michael E., Jr. – Advances in Engineering Education, 2015
In an introductory chemical engineering course, the conceptual framework of a holistic problem-solving methodology in conjunction with a problem-based learning approach has been shown to create a learning environment that nurtures deep learning rather than surface learning. Based on exam scores, student grades are either the same or better than…
Descriptors: Chemical Engineering, Problem Solving, Teaching Methods, Problem Based Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Narode, Ronald B. – Journal of Pre-College Engineering Education Research, 2011
Using an apparently simple problem, ''Design a cylindrical can that will hold a liter of milk,'' this paper demonstrates how engineering design may facilitate the teaching of the following ideas to secondary students: linear and non-linear relationships; basic geometry of circles, rectangles, and cylinders; unit measures of area and volume;…
Descriptors: Mathematics Instruction, Engineering Education, Interdisciplinary Approach, Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Barroso, Luciana R.; Morgan, James R. – Advances in Engineering Education, 2012
This paper describes the creation and evolution of an undergraduate dynamics and vibrations course for civil engineering students. Incorporating vibrations into the course allows students to see and study "real" civil engineering applications of the course content. This connection of academic principles to real life situations is in…
Descriptors: Civil Engineering, Undergraduate Study, Program Development, Undergraduate Students
Gurau, Yolanda; Bartelme, Joe – Engineering Education, 1991
Described is a senior project course that is intended to prepare graduates for solving problems in a real engineering environment. Students in electronics engineering technology may choose between an independent study option and a structured course in which they design and implement a project in a specified field. The scheduling, evaluation, and…
Descriptors: Course Content, Electronics, Engineering Education, Higher Education
Peer reviewed Peer reviewed
Soares, Joao B. P.; Penlidis, Alexander; Hamielec, Archie E. – Chemical Engineering Education (CEE), 1998
Describes how interaction with several polymer manufacturing companies through industrial short courses and research projects has led to the development of dynamic and up-to-date undergraduate and graduate curriculums in polymer science and engineering technology. (DDR)
Descriptors: Chemical Engineering, Competition, Course Content, Design
Peer reviewed Peer reviewed
Prausnitz, Mark R. – Chemical Engineering Education (CEE), 1998
Describes Controlled-Operation Mechanical Energy Transducers (COMETs), which are part of a project to introduce sophomore chemical engineering students to a number of important engineering concepts that are usually addressed later in the academic program. (DDR)
Descriptors: Chemical Engineering, Competition, Course Content, Design
Peer reviewed Peer reviewed
Willey, Ronald J.; Price, John M. – Chemical Engineering Education (CEE), 1998
Describes the incorporation of health and safety issues into the engineering curriculum and focuses on an approach that introduces students to open-ended problems early in the curriculum. Reports that students are able to provide fresh solutions to mundane problems. (DDR)
Descriptors: Chemical Engineering, Course Content, Design, Environmental Education
Tanner, Ralph P. – Man/Society/Technology - A Journal of Industrial Arts Education, 1971
Descriptors: Course Content, Curriculum Development, Environmental Education, Industrial Arts
Peer reviewed Peer reviewed
Reuning, Richard H.; Krautheim, Daniel – American Journal of Pharmaceutical Education, 1978
At Ohio State University, an undergraduate course extends the course sequence in biopharmaceutics and pharmacokinetics to application to problems in optimizing drug therapy. Course content, structure, instructional methods, and student term projects are described, and a course outline, typical projects, and some behavioral objectives are appended.…
Descriptors: Behavioral Objectives, Course Content, Course Descriptions, Drug Therapy
Peer reviewed Peer reviewed
Harb, John N.; Solen, Kenneth A. – Chemical Engineering Education (CEE), 1998
Discusses the needs of freshmen chemical engineering students in terms of courses related to the field. Describes the nature and content of a course designed to involve freshmen in a chemical engineering curriculum. (DDR)
Descriptors: Chemical Engineering, Course Content, Hands on Science, Higher Education
Peer reviewed Peer reviewed
Visser, Maretha; Cleaver, Glenda – Teaching of Psychology, 1999
Describes a psychology course that implemented a problem-solving approach to provide students with a hands-on experience of community psychology in a multicultural South Africa. Traces the students' reactions to the course from their initial enthusiasm and emergence of frustration to their eventual understanding of other cultures. (CMK)
Descriptors: Community Psychology, Course Content, Cultural Awareness, Cultural Pluralism
Peer reviewed Peer reviewed
Wirth, Frederick H. – Physics Teacher, 1991
An introductory Natural Science course with a focus on the laboratory is described. The main function of the course is getting students prepared for required individual projects in science. A copy of the syllabus, a description of laboratory experiments, and the context of the course are included. (KR)
Descriptors: Course Content, Course Descriptions, Holography, Introductory Courses
Peer reviewed Peer reviewed
Valle-Riestra, J. Frank – Chemical Engineering Education, 1983
Describes a course designed to expose neophytes to methodology used in chemical process industries to evaluate commercial feasibility of proposed projects. Previously acquired disciplines are integrated to facilitate process synthesis, gain appreciation of nature of industrial projects and industrial viewpoint in managing them, and to become adept…
Descriptors: Chemical Engineering, Chemical Industry, Course Content, Course Descriptions
Previous Page | Next Page ยป
Pages: 1  |  2